## Math 3C03

M. Min-Oo

Assignment \#4

Due: Thursday, November 7th, 2013 in class at the beginning of the lecture

1. Show that

$$
\int_{0}^{1}\left(J_{n}(\alpha r)\right)^{2} r d r=\frac{1}{2}\left(J_{n+1}(\alpha)\right)^{2}
$$

where $\alpha$ is any root (zero) of the Bessel function $J_{n}$
2. Find the electric potential outside a spherical capacitor, consisting of two hemispheres of radius 1 m , joined along the equator by a thin insulating strip, if the upper hemisphere is kept at +110 V and the lower hemisphere at -110 V .
3. Show that

$$
u(x, y)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{y}{y^{2}+(x-\xi)^{2}} f(\xi) d \xi \quad \text { Poisson Formula }
$$

solves Laplace equation $\Delta u=0$ in the upper half plane $y>0$ with boundary values $u(x, 0)=f(x)$.
4. Find a radially symmetric solution $u(r, t)$ of the two-dimensional wave equation

$$
\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u
$$

on the unit disk: $r^{2}=x^{2}+y^{2} \leq 1$, satisfying the boundary condition: $u(1, t)=0$ for all $t \geq 0$ and initial conditions:

$$
u(r, 0)=1-r^{2}, \quad \frac{\partial}{\partial t} u(r, 0)=0
$$

5. Do problem 21.18 on page 771 in the textbook.
6. (bonus question) Prove the following formulas for Bessel functions (of the first kind):

$$
\begin{aligned}
\frac{d}{d x}\left(x^{n} J_{n}(x)\right) & =x^{n} J_{n-1}(x) \\
\frac{d}{d x}\left(x^{-n} J_{n}(x)\right) & =-x^{-n} J_{n+1}(x)
\end{aligned}
$$

and hence show that the zeros of the Bessel functions interlace, i.e. show that between any two consecutive positive zeros of $J_{n}(x)$, there is exactly one zero of $J_{n+1}(x)$.

