
Math 3C03
Short Answers to Assignment #3

#1. Laguerre’s differential equation is given by:

z
d2y

dx2
+ (1− z)dy

dz
+ λy = 0.

Using p(z) = (1− z)/z and q(z) = λ/z, we obtain:

lim
z→0

zp(z) = 1 and lim
z→0

z2q(z) = 0.

Hence, z = 0 is a regular singular point, and we can use Frobenius method to find a power series
solution of the form

y(z) =

∞∑
n=0

anz
n+σ.

Substituting in the ODE and rearranging terms, we get:

zσ

[ ∞∑
k=−1

(k + 1 + σ)2ak+1z
k −

∞∑
k=0

(k + σ − λ)akz
k

]
= 0,

zσ

[
[σ(σ − 1) + σ]a0z

−1 +

∞∑
k=0

[
(k + 1 + σ)2ak+1 − (k + σ − λ)ak

]
zk

]
= 0.

The indicial equation is:
σ(σ − 1) + σ = σ2 = 0 ⇒ σ1,2 = 0.

The recurrence relation is:

ak+1 =
k + σ − λ

(k + σ + 1)2
ak =

k − λ
(k + 1)2

ak

for σ = 0. For λ = N , N non-negative integer, aj ≡ 0, for j = N + 1, N + 2, . . . Therefore, the
solutions are polynomials of order N given by:

LN (z) =

N∑
n=0

anz
n.

Using the recurrence relation, the n-th coefficient is given by:

an = a0

n∏
k=1

−(N − (k − 1))

k2
= a0

(−1)nN !

(N − n)!(n!)2
, therefore

LN (z) =

N∑
n=0

(−1)n(N !)2

(N − n)!(n!)2
zn,

since LN (0) = a0 = N !.
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#2. We want to find constants cn, n = 0, 1, . . . , 4 such that

f(x) = x2(1− x)2 = x4 − 2x3 + x2
4∑

n=0

cnPn(x)

where Pn is the Legendre polynomial of order n. The coefficients cn are given by:

cn =

∫ 1
−1 f(x)Pn(x)dx∫ 1
−1 Pn(x)Pn(x)dx

=
2n+ 1

2

∫ 1

−1
f(x)Pn(x)dx

We find that:

c0 =
8

15
, c1 = −6

5
, c2 =

26

21
, c3 = −4

5
, c4 =

8

35
.

This can also be obtained by equating coefficients of the two quartic polynomials. The equivalent
of Parseval’s Theorem can be stated as:∫ 1

−1
|f(x)|2dx =

∫ 1

−1

(
4∑

n=0

cnPn(x)

)(
4∑

m=0

cmPm(x)

)
dx

=

4∑
n=0

2

2n+ 1
c2n.

Evaluating the integral and the finite sum we obtain 736/315 for both of them, hence verifying
Parseval’s identity.

#3. The potential from the“north pole” is given by:

Φ+ =
−q

4πε0

1

r

∞∑
n=0

Pn(cos θ)(
a

r
)n

from the“south pole” by:

Φ− =
−q

4πε0

1

r

∞∑
n=0

Pn(− cos θ)(
a

r
)n =

−q
4πε0

1

r

∞∑
n=0

(−1)nPn(cos θ)(
a

r
)n

and from the origin by Φ0 = 2q
4πε0

1
r . Adding up the three contributions, we get:

Φ =
−q

4πε0

1

r

∞∑
k=1

P2k(cos θ)(
a

r
)2k (only positive even powers)
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#4. Put h = i eiθ in the given generating function. We get:

exp(iz cos θ) = exp
(z

2
i(eiθ + e−iθ)

)
=

∞∑
k=−∞

Jk(z)i
keikθ

which is a Fourier series. Now use Jn(z) = (−1)nJn(z); equate real and imaginary parts, and use
the formula for Fourier coefficients to get:

(−1)mJ2m(z) =
1

2π

∫ 2π

0
cos(z cos θ) cos(2mθ) (−1)mJ2m+1(z) =

1

2π

∫ 2π

0
sin(z cos θ) cos((2m+1)θ)

#5. The integral is equal to ‖xHn(x)‖2 with respect to the inner product< f |g >=
∫ +∞
−∞ f(x)g(x)e−x

2
dx.

We use the following facts:

(i) Hermite polynomials are orthogonal with respect to this inner product

(ii) ‖Hk(x)‖2 = 2kk!
√
π (normalisation)

(iii) the recursion formula xHn(x) = 1
2Hn+1(x) + nHn−1(x).

‖xHn(x)‖2 = ‖1

2
Hn+1(x) + nHn−1(x)‖2

=
1

4
‖Hn+1(x)‖2 + n2‖Hn−1(x)‖2

=
√
π
(
2n−1(n+ 1)! + n 2n−1n!

)
= (n+

1

2
)
√
π 2n n!

#6 (bonus question) Proof by contradiction:
Let α < β be two consecutive zeros of y1 and let’s assume that y2 > 0 in the interval [α, β].
We can also assume without loss of generality that y1 > 0 in the open interval (α, β) and so
y′1(α) > 0 , y′1(β) < 0. Now

0 =

∫ β

α
(y′′1 + q1y1)y2 − (y′′2 + q2y2)y1

=

∫ β

α
(q1 − q2)y1y2 +

[
(y′1)y2 − y′2y1

]x=β
x=α

which is a contradiction since
∫ β
α (q1 − q2)y1y2 < 0

and also the boundary term [(y′1)y2 − y′2y1]
x=β
x=α = y′1(β)y2(β)− y′1(α)y2(α) < 0
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