Math 3C03

Short Answers to Assignment \#3

\#1. Laguerre's differential equation is given by:

$$
z \frac{d^{2} y}{d x^{2}}+(1-z) \frac{d y}{d z}+\lambda y=0 .
$$

Using $p(z)=(1-z) / z$ and $q(z)=\lambda / z$, we obtain:

$$
\lim _{z \rightarrow 0} z p(z)=1 \quad \text { and } \quad \lim _{z \rightarrow 0} z^{2} q(z)=0
$$

Hence, $z=0$ is a regular singular point, and we can use Frobenius method to find a power series solution of the form

$$
y(z)=\sum_{n=0}^{\infty} a_{n} z^{n+\sigma} .
$$

Substituting in the ODE and rearranging terms, we get:

$$
\begin{gathered}
z^{\sigma}\left[\sum_{k=-1}^{\infty}(k+1+\sigma)^{2} a_{k+1} z^{k}-\sum_{k=0}^{\infty}(k+\sigma-\lambda) a_{k} z^{k}\right]=0 \\
z^{\sigma}\left[[\sigma(\sigma-1)+\sigma] a_{0} z^{-1}+\sum_{k=0}^{\infty}\left[(k+1+\sigma)^{2} a_{k+1}-(k+\sigma-\lambda) a_{k}\right] z^{k}\right]=0
\end{gathered}
$$

The indicial equation is:

$$
\sigma(\sigma-1)+\sigma=\sigma^{2}=0 \Rightarrow \sigma_{1,2}=0
$$

The recurrence relation is:

$$
a_{k+1}=\frac{k+\sigma-\lambda}{(k+\sigma+1)^{2}} a_{k}=\frac{k-\lambda}{(k+1)^{2}} a_{k}
$$

for $\sigma=0$. For $\lambda=N, N$ non-negative integer, $a_{j} \equiv 0$, for $j=N+1, N+2, \ldots$ Therefore, the solutions are polynomials of order N given by:

$$
L_{N}(z)=\sum_{n=0}^{N} a_{n} z^{n}
$$

Using the recurrence relation, the n-th coefficient is given by:

$$
\begin{gathered}
a_{n}=a_{0} \prod_{k=1}^{n} \frac{-(N-(k-1))}{k^{2}}=a_{0} \frac{(-1)^{n} N!}{(N-n)!(n!)^{2}}, \quad \text { therefore } \\
L_{N}(z)=\sum_{n=0}^{N} \frac{(-1)^{n}(N!)^{2}}{(N-n)!(n!)^{2}} z^{n}
\end{gathered}
$$

since $L_{N}(0)=a_{0}=N!$.
\#2. We want to find constants $c_{n}, n=0,1, \ldots, 4$ such that

$$
f(x)=x^{2}(1-x)^{2}=x^{4}-2 x^{3}+x^{2} \sum_{n=0}^{4} c_{n} P_{n}(x)
$$

where P_{n} is the Legendre polynomial of order n. The coefficients c_{n} are given by:

$$
c_{n}=\frac{\int_{-1}^{1} f(x) P_{n}(x) d x}{\int_{-1}^{1} P_{n}(x) P_{n}(x) d x}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) d x
$$

We find that:

$$
c_{0}=\frac{8}{15}, \quad c_{1}=-\frac{6}{5}, \quad c_{2}=\frac{26}{21}, \quad c_{3}=-\frac{4}{5}, \quad c_{4}=\frac{8}{35} .
$$

This can also be obtained by equating coefficients of the two quartic polynomials. The equivalent of Parseval's Theorem can be stated as:

$$
\begin{aligned}
\int_{-1}^{1}|f(x)|^{2} d x & =\int_{-1}^{1}\left(\sum_{n=0}^{4} c_{n} P_{n}(x)\right)\left(\sum_{m=0}^{4} c_{m} P_{m}(x)\right) d x \\
& =\sum_{n=0}^{4} \frac{2}{2 n+1} c_{n}^{2}
\end{aligned}
$$

Evaluating the integral and the finite sum we obtain $736 / 315$ for both of them, hence verifying Parseval's identity.
$\# 3$. The potential from the "north pole" is given by:

$$
\Phi^{+}=\frac{-q}{4 \pi \epsilon_{0}} \frac{1}{r} \sum_{n=0}^{\infty} P_{n}(\cos \theta)\left(\frac{a}{r}\right)^{n}
$$

from the "south pole" by:

$$
\Phi_{-}=\frac{-q}{4 \pi \epsilon_{0}} \frac{1}{r} \sum_{n=0}^{\infty} P_{n}(-\cos \theta)\left(\frac{a}{r}\right)^{n}=\frac{-q}{4 \pi \epsilon_{0}} \frac{1}{r} \sum_{n=0}^{\infty}(-1)^{n} P_{n}(\cos \theta)\left(\frac{a}{r}\right)^{n}
$$

and from the origin by $\Phi_{0}=\frac{2 q}{4 \pi \epsilon_{0}} \frac{1}{r}$. Adding up the three contributions, we get:

$$
\Phi=\frac{-q}{4 \pi \epsilon_{0}} \frac{1}{r} \sum_{k=1}^{\infty} P_{2 k}(\cos \theta)\left(\frac{a}{r}\right)^{2} k \quad \text { (only positive even powers) }
$$

\#4. Put $h=i e^{i \theta}$ in the given generating function. We get:

$$
\exp (i z \cos \theta)=\exp \left(\frac{z}{2} i\left(e^{i \theta}+e^{-i \theta}\right)\right)=\sum_{k=-\infty}^{\infty} J_{k}(z) i^{k} e^{i k \theta}
$$

which is a Fourier series. Now use $J_{n}(z)=(-1)^{n} J_{n}(z)$; equate real and imaginary parts, and use the formula for Fourier coefficients to get:
$(-1)^{m} J_{2 m}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (z \cos \theta) \cos (2 m \theta) \quad(-1)^{m} J_{2 m+1}(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (z \cos \theta) \cos ((2 m+1) \theta)$
\#5. The integral is equal to $\left\|x H_{n}(x)\right\|^{2}$ with respect to the inner product $<f \mid g>=\int_{-\infty}^{+\infty} f(x) g(x) e^{-x^{2}} d x$. We use the following facts:
(i) Hermite polynomials are orthogonal with respect to this inner product
(ii) $\left\|H_{k}(x)\right\|^{2}=2^{k} k!\sqrt{\pi} \quad$ (normalisation)
(iii) the recursion formula $x H_{n}(x)=\frac{1}{2} H_{n+1}(x)+n H_{n-1}(x)$.

$$
\begin{aligned}
\left\|x H_{n}(x)\right\|^{2} & =\left\|\frac{1}{2} H_{n+1}(x)+n H_{n-1}(x)\right\|^{2} \\
& =\frac{1}{4}\left\|H_{n+1}(x)\right\|^{2}+n^{2}\left\|H_{n-1}(x)\right\|^{2} \\
& =\sqrt{\pi}\left(2^{n-1}(n+1)!+n 2^{n-1} n!\right) \\
& =\left(n+\frac{1}{2}\right) \sqrt{\pi} 2^{n} n!
\end{aligned}
$$

\#6 (bonus question) Proof by contradiction:
Let $\alpha<\beta$ be two consecutive zeros of y_{1} and let's assume that $y_{2}>0$ in the interval $[\alpha, \beta]$.
We can also assume without loss of generality that $y_{1}>0$ in the open interval (α, β) and so $y_{1}^{\prime}(\alpha)>0, y_{1}^{\prime}(\beta)<0$. Now

$$
\begin{aligned}
0 & =\int_{\alpha}^{\beta}\left(y_{1}^{\prime \prime}+q_{1} y_{1}\right) y_{2}-\left(y_{2}^{\prime \prime}+q_{2} y_{2}\right) y_{1} \\
& =\int_{\alpha}^{\beta}\left(q_{1}-q_{2}\right) y_{1} y_{2}+\left[\left(y_{1}^{\prime}\right) y_{2}-y_{2}^{\prime} y_{1}\right]_{x=\alpha}^{x=\beta}
\end{aligned}
$$

which is a contradiction since $\int_{\alpha}^{\beta}\left(q_{1}-q_{2}\right) y_{1} y_{2}<0$
and also the boundary term $\left[\left(y_{1}^{\prime}\right) y_{2}-y_{2}^{\prime} y_{1}\right]_{x=\alpha}^{x=\beta}=y_{1}^{\prime}(\beta) y_{2}(\beta)-y_{1}^{\prime}(\alpha) y_{2}(\alpha)<0$

