Math 3C03

Short Answers to Assignment \#2

\#1.

$$
|x| \approx \frac{\pi}{2}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos ((2 k-1) x)}{(2 k-1)^{2}}
$$

This can be computed directly or by integrating the step function $\operatorname{sgn}(x)=\frac{x}{|x|},-\pi<x \leq \pi$,

$$
\operatorname{sgn}(x) \approx \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) x)}{2 k-1}
$$

as was done in my notes. Integrating once more we get:

$$
\frac{1}{2} \operatorname{sgn}(x) x^{2} \approx \frac{\pi}{2} x-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) x)}{(2 k-1)^{3}}
$$

and therefore

$$
\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\sin ((2 k-1) x)}{(2 k-1)^{3}}=\frac{\pi}{2} x-\frac{1}{2} \operatorname{sgn}(x) x^{2}=g(x)
$$

and setting $x=\frac{\pi}{2}$ now gives

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k-1)^{3}}=\frac{\pi^{3}}{32}
$$

\#2.

$$
\begin{gathered}
\hat{\psi}(0,0, k)=C \int_{0}^{2 \pi} \int_{-\pi}^{+\pi} \int_{0}^{\infty} \exp (-i k r \cos \theta) r \cos \theta \exp \left(-\frac{r}{2 a_{0}}\right) r^{2} \sin \theta d r d \theta d \phi \\
=2 \pi C \int_{0}^{\infty} \exp \left(-\frac{r}{2 a_{0}}\right) r^{3} \int_{-1}^{+1} u \exp (-i k r u) d u d r
\end{gathered}
$$

where we used the substitution $u=\cos \theta$ and $2 \pi C=\frac{1}{4} a_{0}^{-\frac{5}{2}}$ Now since

$$
\begin{gathered}
\int_{-1}^{+1} u \exp (-i k r u) d u=\left(e^{+i k r}-e^{-i k r}\right)\left(\frac{1}{i k r}-\frac{1}{k^{2} r^{2}}\right) \\
\hat{\psi}(0,0, k)=\frac{1}{4} a_{0}^{-\frac{5}{2}} \int_{0}^{\infty}\left(\exp \left(\alpha_{k} r\right)-\exp \left(\bar{\alpha}_{k} r\right)\right)\left(\frac{r^{2}}{i k}-\frac{r}{k^{2}}\right) d r
\end{gathered}
$$

where $\alpha_{k}=\frac{-1}{2 a_{0}}+i k \quad \bar{\alpha}_{k}=\frac{-1}{2 a_{0}}-i k$. After a few manipulations (without using Wolfram alpha!), I find:

$$
\hat{\psi}(0,0, k)=8 a_{0}^{\frac{3}{2}}\left[\frac{12-8 a_{0}^{2} k^{2}}{\left(1+4 a_{0}^{2} k^{2}\right)^{3}}-\frac{i}{a_{0} k\left(1+4 a_{0}^{2} k^{2}\right)^{2}}\right]
$$

\#3. The Fourier transform of the basic square wave is the sinc function and of the tent (or triangular) wave is $\operatorname{sinc}{ }^{2}$ function (as was done in class). The questions here can be solved by using the properties of Fourier transforms (superposition, dilation, shifts, scaling, convolution, etc.). The answers are as follows:
(a)

$$
\frac{1}{\sqrt{2 \pi}}\left(\frac{1}{2} e^{-\frac{1}{2} i \omega} \operatorname{sinc}^{2}\left(\frac{1}{4} \omega\right)+2 e^{-2 i \omega} \operatorname{sinc}^{2}\left(\frac{1}{2} \omega\right)+\frac{9}{2} e^{-\frac{9}{2} i \omega} \operatorname{sinc}^{2}\left(\frac{3}{4} \omega\right)\right)
$$

(b)

$$
\frac{1}{\sqrt{2 \pi}}\left(8 \operatorname{sinc}^{2}(\omega)-2 \operatorname{sinc}^{2}\left(\frac{1}{2} \omega\right)\right)
$$

(c)

$$
\frac{1}{\sqrt{2 \pi}}\left((1+i \omega) e^{-i \omega} \operatorname{sinc}^{2}\left(\frac{1}{2} \omega\right)\right)
$$

\#4.

$$
T_{e}=\frac{1}{x(0)} \int_{-\infty}^{+\infty} x(t) e^{-i 0 t} d t=\frac{\sqrt{2 \pi} \hat{x}(0)}{x(0)}
$$

and

$$
B_{e}=\frac{1}{\hat{x}(0)} \int_{-\infty}^{+\infty} \hat{x}(t) e^{+i 0 t} d t=\frac{\sqrt{2 \pi} x(0)}{\hat{x}(0)}
$$

Therefore $T_{e} B_{e}=2 \pi$.
For the function $x(t)=\exp \left(-\frac{|t|}{T}\right), T_{e}=\int_{-\infty}^{+\infty} \exp \left(-\frac{|t|}{T}\right) d t=2 T$ and hence $B_{e}=\frac{\pi}{T}$ and the Fourier transform is:

$$
\hat{x}(\omega)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} e^{-\frac{t}{T}} \cos (\omega t) d t=\sqrt{\frac{2}{\pi}} \frac{T}{1+\omega^{2} T^{2}}
$$

Note that this is in fact a Laplace transform! The total energy is

$$
\int_{-\infty}^{+\infty}|x(t)|^{2} d t=\int_{-\infty}^{+\infty}|x(\omega)|^{2} d \omega=T
$$

and so

$$
\frac{1}{T} \frac{2 T^{2}}{\pi} \int_{-\frac{\pi}{4 T}}^{+\frac{\pi}{4 T}} \frac{1}{\left(1+(\omega T)^{2}\right)^{2}} d \omega=\frac{8}{16+\pi^{2}}+\frac{2}{\pi} \arctan \left(\frac{\pi}{4}\right) \approx 0.73
$$

\#5. Taking the Laplace transform of the differential equation

$$
\begin{aligned}
\ddot{x}+2 x+y & =\cos (t) \\
\ddot{y}+2 x+3 y & =2 \cos (t)
\end{aligned}
$$

with initial values $x(0)=\dot{x}(0)=y(0)=\dot{y}(0)$, we obtain:

$$
\begin{aligned}
s^{2} F(s)+2 F(s)+G(s) & =\frac{s}{s^{2}+1} \\
G(s)+2 F(s)+3 G(s) & =\frac{2 s}{s^{2}+1}
\end{aligned}
$$

where F and G are the Laplace transforms of x and y respectively.
Solving for F and G, we get:

$$
G(s)=2 F(s)=\frac{2 s}{\left(s^{2}+4\right)\left(s^{2}+1\right)}=\frac{2}{3}\left(\frac{s}{s^{2}+1}-\frac{s}{s^{2}+4}\right)
$$

and hence

$$
y(t)=2 x(t)=\frac{2}{3}(\cos (t)-\cos (2 t))
$$

The system therefore moves on the line $y=2 x$.
The matrix $\left(\begin{array}{ll}2 & 1 \\ 2 & 3\end{array}\right)$ has eigenvalues $\omega^{2}=1,2$ with corresponding eigenvectors $(1,-1)^{T}$ and $(1,2)^{T}$. The frequency of the driving force is 1 , whereas the system is moving in the eigen-direction (normal mode) of the second eigenvalue 2, perpendicular to the normal mode of the first eigen-frequency and hence there is no resonance.

\#6 (bonus question)

The Fourier transform of a single strip from a to $2 a$ is $\hat{f}_{1}(q)=\frac{A}{\sqrt{2 \pi}}\left(\frac{e^{-i a q}-e^{-2 i a q}}{i q}\right)$, where $q=k \sin \theta$. A shift of $2 a n$ units (to the right) changes the Fourier transform by a factor of $e^{-2 i a n q}$. Therefore by linearity, the Fourier transform of the grating is:

$$
\hat{f}_{1}(q) \sum_{n=-N}^{N-1} e^{-2 i a n q}=\hat{f}_{1}(q) \frac{e^{2 i a N q}-e^{-2 i a N q}}{1-e^{-2 i a q}}=\frac{A}{\sqrt{2 \pi}} e^{-\frac{1}{2} i a q} \frac{\sin (2 a N q)}{q \cos \left(\frac{1}{2} a q\right)}
$$

The intensity $I(\theta)$ is proportional to

$$
|\hat{f}(q)|^{2}=\frac{A^{2}}{2 \pi} \frac{\sin ^{2}(2 a N q)}{q^{2} \cos ^{2}\left(\frac{1}{2} a q\right)}
$$

For large $N, \sin ^{2}(2 a N q)$ oscillates very rapidly and uniformly between 0 and 1 .
For small $q, \sin ^{2}(2 a N q) \approx 4 a^{2} N^{2} q^{2}$ and $\cos ^{2}\left(\frac{1}{2} a q\right) \approx 1$, so $|\hat{f}(q)|^{2} \approx \frac{2}{\pi} A^{2} a^{2} N^{2}$.
For $\frac{1}{2} a q \approx(2 m+1) \frac{\pi}{2}$, we can use L'Hôpital's rule to get

$$
|\hat{f}(q)|^{2} \approx \frac{8 A^{2} a^{2} N^{2}}{(2 m+1) \pi^{3}}
$$

