Math 3C03

Short Answers to Assignment \#1

\# 1. The positive symmetric matrix $R=A^{T} A=\left(\begin{array}{ccc}882 & 504 & -558 \\ 504 & 936 & -504 \\ -558 & -504 & 882\end{array}\right)$
has eigenvalues $\lambda_{1}=1944, \lambda_{2}=432, \lambda_{3}=324$ (in descending order) with corresponding unit eigenvectors:
$u_{1}=\frac{1}{\sqrt{3}}(1,1,-1)^{T} \quad u_{2}=\frac{1}{\sqrt{6}}(1,-2,-1)^{T} \quad u_{3}=\frac{1}{\sqrt{2}}(1,0,1)^{T}$
You can do this "by hand" but it is less labour-intensive if you use Matlab to compute
So $R=U \Lambda U^{T}$ with $U=\left(u_{1}, u_{2}, u_{3}\right)$ and Λ is the diagonal matrix with diagonal elements $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
Similarly the positive symmetric matrix $S=A A^{T}$ has the spectral decomposition: $S=V \tilde{\Lambda} V^{T}$ with the same non-zero eigenvalues as $R: \lambda_{1}=1944, \lambda_{2}=432, \lambda_{3}=324$ plus an additional zero eigenvalue $\lambda_{4}=0$ with corresponding eigenvectors: (which are the columns of V):
$v_{1}=\frac{1}{\sqrt{18}}(4,1,1,0)^{T} v_{2}=\frac{1}{\sqrt{18}}(-1,2,2,-3)^{T} v_{3}=\frac{1}{\sqrt{2}}(0,-1,1,0)^{T} v_{4}=\frac{1}{\sqrt{18}}(-1,2,2,3)^{T}$
The SVD of A is therefore:

$$
\left(\begin{array}{ccc}
22 & 28 & -22 \\
1 & -2 & -19 \\
19 & -2 & -1 \\
-6 & 12 & 6
\end{array}\right)=\frac{1}{3 \sqrt{2}}\left(\begin{array}{cccc}
4 & -1 & 0 & -1 \\
1 & 2 & -3 & 2 \\
1 & 2 & 3 & 2 \\
0 & -3 & 0 & 3
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{1944} & 0 & 0 \\
0 & \sqrt{432} & 0 \\
0 & 0 & \sqrt{324} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\
-\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

Let $B=U \hat{\Lambda} V^{T}$, where $\hat{\Lambda}=\left(\begin{array}{cccc}\frac{1}{\sqrt{\lambda_{1}}} & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{\lambda_{2}}} & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{\lambda_{3}}} & 0\end{array}\right)$.
The "best" solution (in the sense of minimising the squared length of the error) of $A x=b$ is given by $x=B b . B$ is known as the "pseudo-inverse" ($\mathrm{B}=\operatorname{pinv}(\mathrm{A})$ in Matlab)

For $b=(6,-39,15,18)^{T}$, we get $x=(1,1,2)^{T}$, which is an exact solution.
For $b=(9,-42,15,15)^{T}$, we get $x=\frac{1}{36}(40,37,74)$ with error vector $(-1,2,2,3)^{T}$, so the residual (length of the error vector) is $=\sqrt{18}$
$\# 2$. From the given equations: $-A \ddot{x}=B x$, with

$$
A=\left(\begin{array}{ccc}
m & 0 & 0 \\
0 & M & 0 \\
0 & 0 & m
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
c m+d & -d & 0 \\
-d & c M+2 d & -d \\
0 & -d & c m+d
\end{array}\right)
$$

we solve for ω^{2} in the characteristic equation:

$$
\left|B-\omega^{2} A\right|=\left|\begin{array}{ccc}
c m+d-m \omega^{2} & -d & 0 \\
-d & c M+2 d-M \omega^{2} & -d \\
0 & -d & c m+d-m \omega^{2}
\end{array}\right|=0
$$

and obtain the three eigenvalues:

$$
\omega_{1}^{2}=c, \quad \omega_{2}^{2}=c+\frac{d}{m}, \quad \omega_{3}^{2}=c+\frac{d}{m}+\frac{2 d}{M}
$$

with corresponding eigenvectors (normal modes):

$$
e_{1}=(1,1,1)^{T} \quad e_{2}=(1,0,-1)^{T} \quad e_{3}=\left(1,-\frac{2 m}{M}, 1\right)^{T}
$$

When $d \rightarrow 0$, the system decouples into three independent harmonic oscillators with the same frequency \sqrt{c}.
When $d \rightarrow \infty$, the system is rigidly coupled and only the first mode e_{1} with frequency \sqrt{c} survives.
\#3. $\quad\left|\begin{array}{ccc}x & a & b \\ x^{2} & a^{2} & b^{2} \\ a+b & x+b & x+a\end{array}\right|=\left|\begin{array}{ccc}x-a & a & b-a \\ x^{2}-a^{2} & a^{2} & b^{2}-a^{2} \\ a-x & x+b & a-b\end{array}\right|=(b-a)(x-a)\left|\begin{array}{ccc}1 & a & 1 \\ x+a & a^{2} & b+a \\ -1 & x+b & -1\end{array}\right|$

$$
=(b-a)(x-a)\left|\begin{array}{ccc}
1 & a & 1 \\
x+a & a^{2} & b+a \\
0 & x+b+a & 0
\end{array}\right|=(b-a)(x-a)(x-b)(x+a+b)
$$

\# 4. $\langle 1,1\rangle=\int_{-1}^{1} 1^{2} d t=2$, so $\mathbf{e}_{\mathbf{0}}=\frac{1}{\sqrt{2}}$.
$<t, 1\rangle=\int_{-1}^{1} t d t=0$ and $\langle t, t\rangle=\int_{-1}^{1} t^{2} d t=\frac{2}{3}$, so $\mathbf{e}_{\mathbf{1}}=\sqrt{\frac{3}{2}} t$
$\left.<t^{2}, \mathbf{e}_{\boldsymbol{0}}>\mathbf{e}_{\mathbf{0}}=\frac{1}{3},<t^{2}, \mathbf{e}_{\mathbf{1}}\right\rangle=0$ and $\left|t^{2}-\frac{1}{3}\right|^{2}=\int_{-1}^{1}\left(t^{4}-\frac{2}{3} t^{2}+\frac{1}{9}\right) d t=\frac{8}{45}$ so $\mathbf{e}_{\mathbf{2}}=\frac{3 \sqrt{5}}{2 \sqrt{2}}\left(t^{2}-\frac{1}{3}\right)$
$<t^{3}, 1>=0,<t^{3}, \mathbf{e}_{\mathbf{1}}>\mathbf{e}_{\mathbf{1}}=\frac{3}{5} t,<t^{3}, t^{2}-\frac{1}{3}>=0$ and $\left|t^{3}-\frac{3}{5} t\right|^{2}=\int_{-1}^{1}\left(t^{6}-\frac{6}{5} t^{4}+\frac{9}{25} t^{2}\right) d t=\frac{8}{175}$
so $\mathbf{e}_{\boldsymbol{3}}=\frac{5 \sqrt{7}}{2 \sqrt{2}}\left(t^{3}-\frac{3}{5} t\right)$
Answer: $\left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}} t, \frac{3 \sqrt{5}}{2 \sqrt{2}}\left(t^{2}-\frac{1}{3}\right), \frac{5 \sqrt{7}}{2 \sqrt{2}}\left(t^{3}-\frac{3}{5} t\right)\right\}$
(up to normalisation these are the first four Legendre polynomials)
\# 5. (in Matlab code)

$$
\left.\begin{array}{l}
A=\left[\begin{array}{ll}
0.110 .190 .10 ; 0.49-0.310 .21 ; 1.55-0.700 .70
\end{array}\right] ; \\
B=[0.110 .190 .10 ; 0.49-0.310 .21 ; 1.55-0.700 .71
\end{array}\right] ;
$$

so the two solutions are quite different!
$\operatorname{det}(A)=0.0027, \operatorname{det}(B)=0.0015$ (relatively small)
A and B are ill-conditioned matrices with condition numbers:
$\operatorname{cond}(A)=342.1096$ and $\operatorname{cond}(B)=644.6448($ pretty large $)$
\#6 $f(x)=x^{3}-4 x$ for $0 \leq x \leq 2$, extended periodically as an odd function with period 4.

$$
b_{n}=\int_{0}^{+2}\left(x^{3}-4 x\right) \sin \left(\frac{1}{2} n \pi x\right) d x=(-1)^{n} \frac{96}{n^{3} \pi^{3}}
$$

so by Parseval's identity

$$
\frac{1}{2} \sum_{n=1}^{\infty} \frac{96^{2}}{n^{6} \pi^{6}}=\frac{1}{4} \int_{-2}^{+2}\left(x^{3}-4 x\right)^{2} d x=\frac{512}{105}
$$

from which it follows that

$$
\zeta(6)=\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}
$$

The approximation is already very good after summing up three terms of the Fourier series as you can see here:

