6. Trigonometry

This section contains review material on:

- Trigonometric ratios and trigonometric functions
- Trigonometric identities and trigonometric equations

Angles. Recall that a positive angle is measured counterclockwise from the direction of the positive x-axis. If it is measured clockwise, it is negative; see the figure below. The units commonly used are degrees (°) and radians (rad). By convention, we use radians (unless stated otherwise). For example, $\sin 1$ denotes the value of the trigonometric function sine for 1 radian (using a calculator, we get $\sin 1 \approx 0.841471$).

A full revolution equals 360 degrees = 2π radians. Thus, 1 degree equals $2\pi/360 = \pi/180$ radians (that is, to convert from degrees to radians, we multiply by $\pi/180$). Conversely, 1 radian equals $360/(2\pi) = 180/\pi$ degrees (and in order to convert radians into degrees, we multiply by $180/\pi$). For example, 90 degrees equals $90\frac{\pi}{180} = \frac{\pi}{2}$ radians. Similarly, $\frac{5\pi}{4}$ radians equals $\frac{5\pi}{4}\frac{180}{\pi} = 225$ degrees.

Exercise 1.

(a) Express 225 degrees in radians

(b) Express $\frac{7\pi}{6}$ radians in degrees.

Trigonometric Ratios. For an acute angle, the trigonometric ratios are defined as ratios of lengths of sides in a right triangle.

The remaining three ratios are usually defined as the reciprocals of $\sin \theta$, $\cos \theta$ and $\tan \theta$.

Trigonometric ratios cosecant: $\csc \theta = \frac{1}{\sin \theta} = \frac{\text{hypotenuse}}{\text{opposite}}$ secant: $\sec \theta = \frac{1}{\cos \theta} = \frac{\text{hypotenuse}}{\text{adjacent}}$ cotanent: $\cot \theta = \frac{1}{\tan \theta} = \frac{\text{adjacent}}{\text{opposite}}$

For general angles (such as obtuse or negative angles) the above definition does not apply, and we proceed as follows.

Let θ be an angle defined by the x-axis and a line ℓ , see the figure below.

Choose a point P anywhere on the line ℓ (as long as it is not the origin), and denote by (x, y) its coordinates. Let r be the distance between P and the origin (recall that $r = \sqrt{x^2 + y^2} > 0$). We define:

$$\sin \theta = \frac{y}{r} \qquad \cos \theta = \frac{x}{r} \qquad \tan \theta = \frac{y}{x}$$
$$\csc \theta = \frac{1}{\sin \theta} = \frac{r}{y} \qquad \sec \theta = \frac{1}{\cos \theta} = \frac{r}{x} \qquad \cot \theta = \frac{1}{\tan \theta} = \frac{x}{y}$$

$$\csc \theta = \frac{1}{\sin \theta} = \frac{r}{y}$$
 $\sec \theta = \frac{1}{\cos \theta} = \frac{r}{x}$ $\cot \theta = \frac{1}{\tan \theta} = \frac{x}{y}$

Trigonometric ratios for general angles

Note that $\sin \theta$ and $\cos \theta$ are always defined. However, that is not true for the remaining four ratios. The ratios $\tan \theta$ and $\sec \theta$ are not defined when x = 0, and $\cot \theta$ and $\csc \theta$ are not defined when y = 0.

For an acute angle, the two definitions agree.

Note that

$$\sin^2 \theta + \cos^2 \theta = \frac{y^2}{r^2} + \frac{x^2}{r^2} = \frac{x^2 + y^2}{r^2} = 1,$$

since $x^2 + y^2 = r^2$. Thus, we have obtained the basic trigonometric identity:

$$\sin^2\theta + \cos^2\theta = 1$$

It is also possible to use a unit circle to define trigonometric ratios. Let P be the point of intersection of a circle of radius 1 and the line whose angle (positive or negative) with respect to the x-axis is θ ; see the figure below.

By definition, the coordinates of P are $(\cos \theta, \sin \theta)$. In other words, $\overline{OP'} = \cos \theta$ and $\overline{PP'} = \sin \theta$. Now, draw the vertical line that intersects the x-axis at (1,0) and label its intersection with the line OP by Q, see the figure below. The triangles OPP' and OQQ' are similar. Thus,

$$\frac{\overline{QQ'}}{\overline{OQ'}} = \frac{\overline{PP'}}{\overline{OP'}} \quad \text{implies} \quad \frac{\overline{QQ'}}{1} = \frac{\sin \theta}{\cos \theta}.$$

Thus, $\overline{QQ'} = \tan \theta$.

Values of Trigonometric Ratios for Special Angles.

(1) $\theta = 0$ (radians). Looking at the unit circle we see that, when $\theta = 0$, $\overline{OP'} = 1$ and $\overline{PP'} = 0$; in other words, $\cos 0 = 1$ and $\sin 0 = 0$. Consequently, $\tan 0 = \sin 0/\cos 0 = 0$, and $\sec 0 = 1/\cos 0 = 1$. The ratios $\cot 0$ and $\csc 0$ are not defined.

(2) $\theta = \pi/2$ (radians). In this case (use the unit circle definition again), $\overline{OP'} = 0$ and $\overline{PP'} = 1$ (in other words, the coordinates of P are (0,1)). Thus, $\cos \frac{\pi}{2} = 0$ and $\sin \frac{\pi}{2} = 1$. It follows that $\tan \frac{\pi}{2}$ and $\sec \frac{\pi}{2}$ are not defined. Finally, $\cot \frac{\pi}{2} = \cos \frac{\pi}{2}/\sin \frac{\pi}{2} = 0/1 = 0$ and $\csc \frac{\pi}{2} = 1/\sin \frac{\pi}{2} = 1$.

(3) $\theta = \pi$ (radians). For a change, we use the definition for general angles: pick a point P(x = -1, y = 0); then $r = \sqrt{(-1)^2 + 0^2} = 1$.

It follows that $\cos \pi = x/r = -1/1 = -1$ and $\sin \pi = y/r = 0/1 = 0$. Consequently, $\tan \pi = 0$ and $\sec \pi = -1$. The ratios $\cot \pi$ and $\csc \pi$ are not defined.

(4) $\theta = \pi/4$ (radians). The values of trigonometric ratios can be read from the triangle below.

From the definition for acute angles, we get $\sin \frac{\pi}{4} = \text{opposite} / \text{hypotenuse} = 1/\sqrt{2}$, $\cos \frac{\pi}{4} = \text{adjacent} / \text{hypotenuse} = 1/\sqrt{2}$ and $\tan \frac{\pi}{4} = \text{opposite} / \text{adjacent} = 1$.

(5) $\theta = \pi/6$ and $\theta = \pi/3$ (radians). The values of trigonometric ratios can be read from the triangle below.

From the definition for acute angles, we get

$$\sin \frac{\pi}{6} = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{2}, \quad \cos \frac{\pi}{6} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{3}}{2} \quad \text{and} \quad \tan \frac{\pi}{6} = \frac{\text{opposite}}{\text{adjacent}} = \frac{1}{\sqrt{3}}.$$

Similarly, $\sin \frac{\pi}{3} = \sqrt{3}/2$, $\cos \frac{\pi}{3} = 1/2$ and $\tan \frac{\pi}{3} = \sqrt{3}$.

Example 1. Find the values of $\sin \theta$, $\cos \theta$ and $\tan \theta$ for

(a)
$$\theta = 3\pi/4$$

(b)
$$\theta = 2\pi/3$$
.

Solution

(a) We use the definition for general angles. The line that makes the angle of $\theta = \frac{3\pi}{4}$ radians with respect to the x-axis is a line with slope -1. Thus, we can choose the point (x = -1, y = 1) as P.

In that case, $r=\sqrt{1+1}=\sqrt{2}$, and it follows that $\sin\frac{3\pi}{4}=y/r=1/\sqrt{2}$, $\cos\frac{3\pi}{4}=x/r=-1/\sqrt{2}$ and $\tan\frac{3\pi}{4}=y/x=-1$.

(b) We use the definition for general angles. Placing the triangle that we used to compute the ratios for $\pi/6$ and $\pi/3$ (see (5) above), as shown in the figure, we see that we can use the point $(x = -1, y = \sqrt{3})$ as P.

It follows that $r = \sqrt{x^2 + y^2} = \sqrt{1+3} = 2$, and thus $\sin \frac{2\pi}{3} = y/r = \sqrt{3}/2$, $\cos \frac{2\pi}{3} = x/r = -1/2$ and $\tan \frac{2\pi}{3} = \sqrt{3}$.

Exercise 2. Find the values of $\sin \theta$, $\cos \theta$ and $\tan \theta$ for

(a)
$$\theta = 5\pi/6$$

(b)
$$\theta = -\pi/6$$
.

Example 2. If $0 < \theta < \pi/2$, and $\cos \theta = 3/5$, find the values of $\sin \theta$, $\tan \theta$ and $\sec \theta$.

Solution

By definition, $\sec \theta = 1/\cos \theta = 5/3$.

Using the fact that $\cos \theta$ is the ratio of the adjacent side to the hypotenuse in an acute triangle (and that is given, since $0 < \theta < \pi/2!$), we label the triangle as follows:

By Pythagorean theorem, the opposite side is equal to $a = \sqrt{5^2 - 3^2} = 4$. Thus, $\sin \theta = a/5 = 4/5$ and $\tan \theta = a/3 = 4/3$.

Exercise 3. If $0 < \theta < \pi/2$, and $\csc \theta = 3$, find the values of $\sin \theta$, $\cos \theta$ and $\tan \theta$.

Exercise 4. Find the values of $\sin \theta$, $\cos \theta$, $\tan \theta$ and $\sec \theta$ for $\theta = -3\pi/2$.

Trigonometric Functions. Let x denote an angle (in radians). Using the general method of defining trigonometric ratios, we can compute the values of the functions $y = \sin x$ and $y = \cos x$ for all real numbers x (keep in mind that x denotes an angle in radians).

Since the angles x and $x+2\pi$ are the same (think of an angle and what it looks like one full revolution later), it follows that

Periodicity of
$$\sin x$$
 and $\cos x$
$$\sin(x+2\pi) = \sin x \qquad \cos(x+2\pi) = \cos x$$

These formulas state that the values of sin and cos repeat after 2π radians. In other words, $\sin x$ and $\cos x$ are periodic with period equal to 2π .

By plotting points we obtain the graphs of the two functions. Given below is the graph of $y = \sin x$.

The part of the graph of $\sin x$ over the interval $[0, 2\pi]$ is called the main period. That part is repeated in both directions to produce the whole graph.

Note that $\sin x = 0$ when $x = \dots, -2\pi, -\pi, 0, \pi, 2\pi, \dots$ In words, $\sin x = 0$ when x is an integer multiple of π , i.e., when $x = k\pi$ (k is an integer). We have to remember this fact.

$$\sin x = 0$$
 if and only if $x = k\pi$ ($k = integer$)

Given below is the graph of $y = \cos x$.

Note that $\cos x = 0$ when $x = \dots, -3\pi/2, -\pi/2, \pi/2, \pi/2, \dots$ In words, $\cos x = 0$ at $\pi/2$ and all points that are a multiple of π away from it. Thus,

$$\cos x = 0$$
 if and only if $x = \frac{\pi}{2} + k\pi$ ($k = \text{integer}$)

The part of the graph of $\cos x$ over the interval $[0, 2\pi]$ is called the main period. That part is repeated in both directions to produce the whole graph.

Note that

$$-1 \le \sin x \le 1$$
 and $-1 \le \cos x \le 1$

Recall the basic trigonometric identity

$$\sin^2 x + \cos^2 x = 1$$

Example 3. Sketch the graphs of $y = \sin x$, $y = \sin 2x$ and $y = \sin(x/2)$ in the same coordinate system.

Solution

(a) Recall that the main period of $\sin x$ is defined to be the interval from x=0 to $x=2\pi$. Replacing x by 2x, we get that the main period of $\sin 2x$ is the interval from 2x=0 (i.e., x=0) to $2x=2\pi$ (i.e., $x=\pi$). In other words, the period of $\sin 2x$ is π .

Rephrasing the above argument, we can show that the period of $\sin(ax)$ is $2\pi/a$.

Thus, the graph of $\sin 2x$ is obtained from the graph of $\sin x$ by compressing it along the x-axis by the factor of 2. The period of $\sin(x/2)$ is $2\pi/(1/2) = 4\pi$. Thus, its graph is obtained by stretching $\sin x$ along the x-axis by a factor if 2. See the figure below.

Exercise 5. What is the period of cos(ax)?

Exercise 6. Sketch the graphs of $y = \cos x$, $y = \cos 3x$ and $y = \cos 0.5x$ in the same coordinate system.

______ •

Consider the following triangle.

Using the definition of sin and cos, we get $\cos x = a/c$, $\sin x = b/c$, $\cos \left(\frac{\pi}{2} - x\right) = b/c \sin \left(\frac{\pi}{2} - x\right) = a/c$. We have thus obtained the following formulas.

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$
 and $\cos\left(\frac{\pi}{2} - x\right) = \sin x$

Next, we list useful formulas involving $\sin x$ and $\cos x$.

Relation between
$$x$$
 and $-x$

$$\sin(-x) = -\sin x \qquad \cos(-x) = \cos x$$
Addition and subtraction formulas
$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$
Double angle formulas
$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$

The function $y = \tan x = \frac{\sin x}{\cos x}$ is not defined when $\cos x = 0$; i.e., it is not defined when $x = \frac{\pi}{2} + k\pi$. The graph of $y = \tan x$ is given below.

 $y = \tan x$ is periodic with period π . The part of the graph over the interval $(-\pi/2, \pi/2)$ is its main period. $y = \tan x = 0$ whenever $\sin x = 0$.

Exercise 7. What is the period of tan(ax)?

The function $y = \sec x = 1/\cos x$ has the same domain as $\tan x$. It is periodic with period 2π .

There is a useful relationship between the tangent and the secant, given by

$$\tan^2 x + 1 = \sec^2 x$$

The graph of $\csc x = 1/\sin x$ is given below.

The graph of $\cot x = 1/\tan x = \cos x/\sin x$ is given below. The domain of both $\csc x$ and $\cot x$ consists of all x such that $x \neq k\pi$ (k=integer).

Example 4. Prove the following formulas.

(a)
$$\sin(\pi - x) = \sin x$$

(b)
$$(\sin x + \cos x)^2 = 1 + \sin 2x$$

(a)
$$\sin(\pi - x) = \sin x$$

(c) $\frac{1}{1 - \sin x} + \frac{1}{1 + \sin x} = \frac{2}{\cos^2 x}$

Solution

(a) Using the subtraction formula for sin, we get

$$\sin(\pi - x) = \sin \pi \cos x - \cos \pi \sin x = 0 \cdot \cos x - (-1)\sin x = \sin x.$$

(b) Squaring the left side,

$$(\sin x + \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x,$$

using $\sin^2 x + \cos^2 x = 1$ and the double angle formula for sin, we get

$$= 1 + 2\sin x \cos x = 1 + \sin 2x.$$

(c) Computing the common denominator on the left side, we get

$$\frac{1}{1-\sin x} + \frac{1}{1+\sin x} = \frac{1+\sin x}{1-\sin^2 x} + \frac{1-\sin x}{1-\sin^2 x} = \frac{2}{1-\sin^2 x} = \frac{2}{\cos^2 x}.$$

We used the identity $\sin^2 x + \cos^2 x = 1$.

Exercise 8. Prove the following formulas.

(a) $\sin(\pi/2 + x) = \cos x$

- (b) $\tan^2 x + 1 = \sec^2 x$
- (c) $\sin^2 x \tan^2 x + \sin^2 x \tan^2 x = 0$.

Example 5. Using addition formulas, prove the following identities.

(a) $\sin 2x = 2\sin x \cos x$

(b) $\cos 2x = 1 - 2\sin^2 x$.

Solution

- (a) $\sin 2x = \sin(x+x) = \sin x \cos x + \cos x \sin x = 2\sin x \cos x$.
- (b) As in (a),

$$\cos 2x = \cos(x+x) = \cos x \cos x - \sin x \sin x = \cos^2 x - \sin^2 x$$

now use the identity $\sin^2 x + \cos^2 x = 1$ to eliminate $\cos^2 x$

$$= (1 - \sin^2 x) - \sin^2 x = 1 - 2\sin^2 x.$$

Example 6. Show that $\cos 3x = 4\cos^3 x - 3\cos x$.

Solution

Write 3x = 2x + x, and start with the addition formula for cos:

$$\cos 3x = \cos(2x + x)$$
$$= \cos 2x \cos x - \sin 2x \sin x$$

use the double angle formulas

$$= (2\cos^2 x - 1)\cos x - (2\sin x \cos x)\sin x$$
$$= 2\cos^3 x - \cos x - 2\cos x \sin^2 x$$

replace $\sin^2 x$ using the basic trigonometric identity $\sin^2 x = 1 - \cos^2 x$

$$= 2\cos^{3} x - \cos x - 2\cos x(1 - \cos^{2} x)$$
$$= 2\cos^{3} x - \cos x - 2\cos x + 2\cos^{3} x$$
$$= 4\cos^{3} x - 3\cos x.$$

Exercise 9. Using the idea of the previous example, derive a formula that expresses $\sin 3x$ in terms of $\sin x$.

Exercise 10. Show that $\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y$.

In what follows, the symbol k denotes an integer.

Trigonometric Equations. To find a solution to a trigonometric equation, we find all solutions in the main period first, and then add the multiple of the period.

Example 7. Solve the following equations.

(a)
$$\sin x = 1$$

(b)
$$\tan x = 1$$
.

Solution

- (a) Looking at the graph of $\sin x$, we see that $x = \frac{\pi}{2}$ is the only solution of $\sin x = 1$ in the main period of sin x. Thus, all solutions are given by $x = \frac{\pi}{2} + 2k\pi$.
- (b) There is only one solution to $\tan x = 1$ in the main period of tangent (which is the interval from $-\pi/2$ to $\pi/2$): $x=\frac{\pi}{4}$. Since the period of the tangent is π , all solutions are given by $x=\frac{\pi}{4}+k\pi$.

Exercise 11. Solve the following equations.

(a)
$$\cos x = -1$$

(b)
$$\tan x = -1$$
.

Example 8. Solve the following equations.

(a)
$$\cos x = 1/2$$

(b)
$$\sin x = -1/2$$
.

Solution

(a) From the graph below we see that there are two solutions of the given equation in the main period.

One of them is $x_1 = \frac{\pi}{3}$. Due to symmetry, the other solution is $\pi/3$ units to the left of 2π ; thus, $x_2 = 2\pi - \pi/3 = 5\pi/3$. It follows that all solutions are given by $x = \frac{\pi}{3} + 2k\pi$ and $x = \frac{5\pi}{3} + 2k\pi$ (k is an integer).

(b) From the graph we see that there are two solutions of $\sin x = -1/2$ in the main period.

We know that $\sin \frac{\pi}{6} = \frac{1}{2}$. By symmetry, x_1 is $\pi/6$ units to the right of π , so $x_1 = \pi + \pi/6 = 7\pi/6$. Again, by symmetry, x_2 is $\pi/6$ units to the left of 2π ; thus, $x_2 = 2\pi - \pi/6 = 11\pi/6$. Thus, the solutions are $x = \frac{7\pi}{6} + 2k\pi$ and $x = \frac{11\pi}{6} + 2k\pi$.

Exercise 12. Solve the following equations.

(a)
$$\cos x = -\sqrt{3}/2$$

(b)
$$\tan x = \sqrt{3}$$

(c)
$$\sin x = \sqrt{2}/2$$

Example 9. Solve the equation $\sin 2x = \cos x$.

Solution

Using the double angle formula, we get

$$\sin 2x = \cos x$$

$$2\sin x\cos x = \cos x$$

$$\cos x(2\sin x - 1) = 0.$$

Thus, $\cos x = 0$ or $2\sin x - 1 = 0$. If $\cos x = 0$, then $x = \frac{\pi}{2} + k\pi$ (this equation has been solved earlier). If $\sin x = 1/2$, then $x = \frac{\pi}{6} + 2k\pi$ and $x = \frac{5\pi}{6} + 2k\pi$ (look at the graph of Example 8(b)). Thus, the solution is $x = \frac{\pi}{2} + k\pi$, $x = \frac{\pi}{6} + 2k\pi$ and $x = \frac{5\pi}{6} + 2k\pi$.

Exercise 13. Solve the equation $\sin 2x = \sin x$.

Example 10. Solve the equation $2 + \cos 2x = 3 \cos x$.

Solution

Using the double angle formula for $\cos x$, we rewrite $2 + \cos 2x = 3\cos x$ as $2 + 2\cos^2 x - 1 = 3\cos x$. Thus $2\cos^2 x - 3\cos x + 1 = 0$, and $(2\cos x - 1)(\cos x - 1) = 0$.

It follows that $2\cos x - 1 = 0$, and $\cos x = 1/2$ (in which case $x = \frac{\pi}{3} + 2k\pi$ and $x = \frac{5\pi}{3} + 2k\pi$, see Example 8(a)) and $\cos x - 1 = 0$, and $\cos x = 1$ (in which case $x = 2k\pi$). Thus, the solution is $x = 2k\pi$, $x = \frac{\pi}{3} + 2k\pi$ and $x = \frac{5\pi}{3} + 2k\pi$.

The latter two examples show that, if an equation contains different arguments of trig functions (such as \sin and/or \cos of x and 2x), it is a good idea to reduce the expressions to a single argument (which is usually x).

Example 11. Solve the equation $4 \sin 2x \cos 2x = 1$.

Solution

Using the double angle formula for $\sin x$, we get

$$4\sin 2x\cos 2x = 2(2\sin 2x\cos 2x) = 2\sin 4x = 1$$
,

and thus $\sin 4x = 1/2$.

Now, $\sin A = 1/2$ implies $A = \pi/6$ or $A = 5\pi/6$, see the figure below.

Thus (replacing A by 4x), $4x = \frac{\pi}{6} + 2k\pi$ and $4x = \frac{5\pi}{6} + 2k\pi$, and the solutions are $x = \frac{\pi}{24} + \frac{k\pi}{2}$ and $x = \frac{5\pi}{24} + \frac{k\pi}{2}$.

Exercise 14. Solve the equation $2\cos 2x - 1 = 0$.

55

Additional exercises.

Exercise 15. Let ABC be a right triangle, where $\angle C = 90^{\circ}$; see the figure below.

- (a) Given that a = 21/5 and b = 4, find $\sin \alpha$, $\cos \alpha$, $\sin \beta$, and $\cos \beta$.
- (b) Given that $\cos \beta = 12/13$ and c = 13, find $a, b, \sin \beta$, and $\tan \beta$.
- (c) Given that c = 1 and a = 0.6, find all six trigonometric ratios for angle β .

Exercise 16. What quadrant do the following angles belong to? (Recall the convention that states that if no units for angles are explicitly stated, then the units are radians.)

- (a) $36\pi/7$
- (b) 999^0
- (c) 989^0
- (d) $44\pi/5$.

Exercise 17. Without a calculator, determine the sign of the following expressions.

- (a) $\tan(13\pi/3)$
- (b) $\sin(500^{\circ})$
- (c) $\cos(37\pi)$
- (d) $\sin(\pi/12) + \cos(\pi/7)$.

Exercise 18. Without a calculator, determine which of the following is larger.

- (a) $\sin 1^0$ or $\sin 1$
- (b) $\cos 2^0$ or $\cos 2$
- (c) $\tan 1^0$ or $\tan 1$.

Exercise 19. Simplify the following expressions.

- (a) $\sec^2 x \sin^2 x \cos^2 x$
- (b) $\frac{\cos x}{1 + \sin x} + \tan x$
- (c) $\frac{\sin x}{1 + \cos x} + \frac{\sin x}{1 \cos x}$
- (d) $(\sin x + \cos x)^2 + (\sin x \cos x)^2$.

Exercise 20. Solve the following equations.

- (a) $\tan x = -\sqrt{3}/3$
- (b) $\cot x = -1$
- (c) $\cos x = \sqrt{3}/2$.

Exercise 21. Solve the following equations.

- (a) $\sin x = \sqrt{2}/2$
- (b) $\tan x + \cot x = 0.5$
- (c) $\cos^2 x \cos x 2 = 0$.

Exercise 22. Sketch the graphs of the following functions.

- (a) $\cos(x + \pi/4)$
- (b) $\sin(x \pi)$ (c) $\tan(x + 1)$.

Exercise 23. Prove the following identities.

(a)
$$\frac{1-\sin x}{\cos x} = \frac{\cos x}{1+\sin x}$$

(a)
$$\frac{1-\sin x}{\cos x} = \frac{\cos x}{1+\sin x}$$

(b) $\frac{1}{1+\tan^2 x} + \frac{1}{1+\cot^2 x} = 1$.