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Abstract

Lower bounds on the probability of a union obtained by applying optimal bounds to subsets of events can provide excellent
bounds. Comparisons are made with bounds obtained by linear programming and in the cases considered, the best bound is obtained
with a subset that contains no redundant events contributing to the union. It is shown that redundant events may increase or decrease
the value of a lower bound but surprisingly even removal of a non-redundant event can increase the bound.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In an earlier paper [4] we showed that lower bounds on the probability of a union of n events could be substantially
improved by reducing the number of events {A;} taken in the union and then maximizing. This was demonstrated by
comparing the bound in [5] that uses individual and pairwise joint event probabilities with the bound from [2] based
only on binomial moments and in every example of [5] not only was there improvement but the exact probability was
achieved. An examination showed that the subset of events used to obtain the equality contained no redundant events
(that is no events contained in the union of the other events). The present work is a continuation and examines the
effect of redundancy on the quality of a lower bound, specifically a degree 2 lower bound (by degree of a bound we
mean the largest number of events appearing in any intersection whose probability is used in the bound). We apply
this idea of maximizing over subsets to some numerical examples in the literature where lower bounds are obtained
by linear programming methods.

It is known that the problem of determining optimal bounds can be set up as a linear program where the constraints
are the given probability information [6]. In the simplest case, the constraints involve only the binomial moments

Sin=E [(j)] = Zl§i1<---<i,~§n P(A;; NA;,N---NA;), 1 < j <n, where j < j* so the bound is of degree
J* (v counts the number of events occurring). An example of a bound that can be derived in this way is the Fréchet

optimal [3,8] degree 2 (j* = 2) bound of Dawson and Sankoff (2). At the other extreme, the constraints are the
{P(A})),1 <i<n,P(A;iNAj),1=<i< j<n}and otherindividual joint event probabilities. Analytic expressions
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are generally not available for these bounds because of the difficulty of identifying the extreme points of the feasible
region.
Prekopa and Gao [7] consider a linear program that is computationally less intensive. Their constraints involve

=7 > P(AyN---NAy), 1<ik<n (1)

I<iy<--<ig<n,i€{iy,...,ix}

for example for k = 1, S/1 = P(A;) and for k = 2, S; ) = ZJ i P(A; N Aj). The idea is to trade optimality for
simplicity when 7 is large. We will refer to bounds that use 1nd1v1dual probablhtles but grouped into sums according
to some specified symmetry as hybrid bounds.

The lower bound given in [4] is a hybrid bound because the individual probabilities enter only as binomial moments
over subsets of events. In this paper we apply this bound to the examples in [7] and obtain improvement in all
the examples. Moreover, the bound always achieves the exact probability of the union. It is also observed that the
maximum is achieved over a subset of the events which contains no redundant information that is removal of redundant
events increases the magnitude of the lower bounds. However, the opposite can happen and redundant events may
sometimes improve the bound. Surprisingly, we show that it is possible even if | J/_; A; C Ji_, A; for m < n with
strict inclusion for the known optimal bound based on m events to exceed the corresponding bound based on # events.
We therefore examine some analytic conditions to determine how redundancy affects bounds.

2. Maximizing bounds over subsets and examples

The bound that we propose to maximize over subsets is

057, (1-0)8%,
UA > ’ + : 2)
" 252+ Q=081 | 282, + (1—6)S1,

252 n

where 6 = LZSZ “ | and |x] is the largest integer in x. This bound is due to Dawson and Sankoff [2], is easy to

compute, and 1s the sharpest bound that involves only the binomial moments. It is therefore an appropriate choice.
Let I be a subset of {1,2,...,n} and define Si1(J) = Y ;; P(A), $2(1) = ZZKIEI P(A; N Aj), and

28>(1) 28,(1)
o) = Sin — sy I

Theorem (/4)).

n 2 _ 2
p UAi > max 0(1)Sy(I) n (1 —0))S7 ) ‘ 3)
b I 25 () + Q2 —-60U)S1(I) 28+ —-6)S1U)

In order to examine how well (3) performs in a setting with large n we apply it to the examples used by Prekopa and
Gao [7]. They considered one of the systems of events in [5] when n = 6 and also randomly generated three sets of
events for n = 20 to which they applied their methodology to show improvement with existing bounds. In each case,
they tabulated six bounds: the degree d = 2 bound (2), their d = 2 and d = 3 bounds using constraints involving (1),
and three additional d = 3 bounds referred to as mixture (passive, order, greedy) bounds that arise from computational
methods in which the events are split into two groups, to one of which they apply their d = 2 bound and to the other
their d = 3 bound (Tables 1 and 2). We show improvement in all cases using (3).

Example 1. The bounds in our first example are shown in Table 1, which is reproduced from [7] (the data come
from system III of [5]), but include an additional last column giving the value of (3). Although 7 is only 6, it is still
worthwhile to make the comparison. It is seen that the bound 0.7890 given by (3) improves on all the rest, and is in
fact the exact probability of the union. It arises by applying (2) to the subset of three events {A1, Ay, A4}. As discussed
in [4] the events {A3, A5, Ag} are redundant.

Example 2. Our second example comprises the three larger systems in [7] where n = 20 and the corresponding
lower bounds are presented in Table 2. Again, (3) improves the other bounds and, as well, since the sample space
is provided in [7], it can be checked that (3) achieves the exact probability of the union. (We note in passing that
even the weak second-degree lower Bonferroni bound maximized over subsets also results in the exact probabilities.)



FM. Hoppe / Discrete Mathematics 309 (2009) 123-127 125

Table 1
Lower bound comparison for Example 1
Lower bound ) Sl( 1> Sl{_z Passive Order Greedy Sl( 1> Sl( 5 Slf 3 3)
d=2 d=2 d=3 d=3 d=3 d=3 d=2
0.6933333 0.7221667 0.7221667 0.73145 0.73145 0.73145 0.7890
Table 2
Lower bound comparisons for Example 2
Lower bound (2) S8, Passive Order Greedy S 10815805 3)
d=2 d=2 d=3 d=3 d=3 d=3 d=2
1 0.8275266 0.8580833 0.86123 0.8698107 0.8832994 0.886446 0.99999995
0.8658182 0.9100646 0.9111695 0.9264307 0.9343052 0.93541 0.999989954
3 0.8985498 0.9435812 0.9446198 0.9537189 0.9577441 0.9587778 0.99999189

Furthermore, in all systems, the union U?ﬂl A; can be written as a union of fewer events and the maximum obtains
when (2) is applied directly to the union of these fewer events. For instance, in System 1 the union of all 20 events
is the same as the union of the four events {A>, A3z, A4, A12}, for System 2 use the four events {A¢, A7, A1s5, A19},
and for System 3 use {As, Ag, Ag, A10, A11, A13, A14, Al6, A19, Azp} to obtain the union of all 20 events. In each
case, the lower bound (3) applied to the reduced systems of events results in a lower bound which is exact. Thus we
have not only improved upon [7] but have obtained the exact probability of the union in their examples by a simple
method.

3. Effect of redundancy

A referee of [4] has suggested that a bound based on m events may be better than the one based on n > m events
because the additional terms in Sy ,, S2,, may be superfluous as they involve events already included in the union of
the m events. We therefore examine the extent to which this explanation may be valid. To develop the analysis begin
with an alternative form for (2):

" 28 28
P U A; ] > max < Ln _ 2 ) 4
et l<k<n—1\k+1 k(k+1)

where the maximum is achieved for the integer k = k, = 1 + |252,,/51.,] (note that 1 < k < n — 1). Seneta and
Chen [8] have shown that k can range over k > 1 in (4) with the maximum still achieved in the range 1 < k <n — 1,
an extension that we will require, in particular for k = n.

Next, consider a general collection of n — 1 events {A;} augmented by an included (redundant) A, C U:.‘__ll Aj.

Clearly S1, = S1.n-1 + P(An), S2.0 = S20-1 + 22} P(A, N A;), and

n—1

252,,1_1 +2 Z P(A, N Aj)
2S1,n 2SZ,n _ 2S1,n—1 +2P(An) Jj=1
k+1 k(k+1) k+1 k(k +1)
28101 283n-1 2 13
— PLn-l 2% P(A) — - PA,NA)]. 5
o k(k+1)+k+1(<n> k; (An ﬂ) (5)

Let B, and B, _; denote the bounds on the right side of (4) based on {n, S1 ,, $2.,} and {n — 1, S1 -1, S2.n—1}
respectively, with «, and k1 the corresponding optimal values of k. Hence, setting k = «, in (5),

2811 281 2 1
B, = . - . + P(A,) — — P(A,NA)]. 6
" Kn+1 Kn(Kn+1) Kn+1 ( ( n) Kn ; ( " J) ( )
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Table 3

Elementary conjunctions and their probabilities for Examples 3 and 4

x px) Al Ay A3 Ayg As Ag A7
X0 0.012 X X X X
X1 0.022 X X X X
X2 0.023 X X X X
X3 0.033 X X
X4 0.034 X X X X
X5 0.044 X X X X
X6 0.045 X X X X
X7 0.055 X X X X X
Xg 0.056 X X X
X9 0.066 X X X
X10 0.067 X X X X
X11 0.077 X X X
X12 0.078 X X X X
X13 0.088 X X
X14 0.089 X X X X

Since k, > 1 we can assert (recall the earlier remark concerning the extension by Seneta and Chen [8] of the range of
281,n-1 28.n-1

k in (4)) that il T meTD = B,,_1. Thus always
2 1 I’l—l
B, < B,_1 + P(Ay) — — > P(A,NAj) (7)
n = Pn— Ky + 1 n P = n J

and if P(A,) — % Z’};% P(A,NAj) <Othen B, < B,_1 in which case removal of the redundant A, improves the
bound.

The next two examples show that redundancy can work in both directions. They are based on System I of [5]
followed by a slightly modified version. The original structure is given by the 15 points {xp, ..., x14} that determine
the six events {Ay, ..., Ag} as shown in Table 3. Symbol x in the table indicates that event A; contains point x;
whose probability is p(x;). We have included a seventh event A; for Example 4.

Example 3. From Table 3, the Dawson—Sankoff lower bound (2) for the original system of 15 points and six events,
based on {n = 6, S1,,, S2.,} for P(Uf’:l A;), 1s 0.7007 and the maximizing value of k in (4) is achieved for kg = 2.
Next observe that A3 C Ui# A;. Compute (2) based on the five events {A1, Ay, A4, As, Ag} obtained by removing
Az from the original six events. The result is 0.7300. Thus the optimal bound (2) based on all six events has been
improved by removing an event that is redundant. By noting that P (A,) — é Z’;;% P(A,NAj)=—-0.0440 < O this
example can be placed in the context of (7). P(A3) = 0.2790, Bg = 0.7007 and Ziﬁ P(A3 N A;) = 0.6460, and
therefore, if Bs is the bound (2) with A3 removed (this requires re-ordering the events for consistent notation only so
that A3 comes last), then from (6), Bs < Bs + 3(0.2790 — 2880y — 0.7300 — 0.0293 = 0.7007 giving Bs < Bs and
showing how inclusion of A3 decreases (2). In fact, in this example (7) becomes an equality.

Example 4. On the other hand, if P(A;)— ,(17 Z'};} P(A,NAj) > 0then use of redundant information may possibly
improve the bound. To construct such an example append an additional redundant set A; to Example 3 comprised of
all the points in U?:l A; with the exception of x14. Now (2) based on {n = 7, Sy 5, S2.,} for P(Uzzl A;) 1s 0.7597,
which is achieved for the maximizing value x7 = 3, and this exceeds 0.7007 obtained using {Ay, ..., Ag}. Observe
that P(A7) — - ‘]".:1 P(A7NAj) = 0.7000 — %570 = 0.4943 > 0 allowing the possibility for the redundant
A7 to increase (2). In Examples 1-3, the maximum bound occurred when a redundant event was removed while in
Example 4, inclusion of a redundant event increases the bound (equivalently, removal of a redundant event decreases
the bound). It would therefore be interesting to find an example where removal of a non-redundant event improves the
bound (equivalently, inclusion of a non-redundant event decreases the bound). Here is such a case.

Example 5. Consider a sample space with n = 4 events where the only non-empty elementary conjunctions have the
following probabilities: P(A; N Ax N Az N Ag) =0.02, P(A1 N A NA3NAg) =037, P(AINANA3N Ag) =
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0.51, P(A]N AN A3 N Ag) = 0.06, P(A1 N Az N A3 N Ag) = 0.01, P(A; N A2 N A3 N Ag) = 0.01, P(A; N AN
A3 N A4) = 0.01. In this space, the Dawson—Sankoff bound applied to all four events yields 0.96. It can be seen that
event Az is redundant since A3 C A; U As. Removal of this event and application of the Dawson—Sankoff bound
to A; U Ay U A4 decreases the bound to 0.9567. Event A, is not redundant, and yet removal of A; and application
of the Dawson—Sankoff bound to A; U A3 U Ay increases the bound to 0.97. Finally, removal of both A,, A3 gives
the lower bound 0.98. Note that the actual probability of the union of all four events is 0.99. This simple example
simultaneously demonstrates the non-intuitive behaviour that removal of a redundant event may decrease a bound,
while removal of a non-redundant event may increase a bound (it is trivial to show, using a disjoint event, that removal
of a non-redundant event may decrease a bound — this is the expected behaviour).

Here P(A1) = 0.4, P(A2) = 0.9, P(A3) = 0.95, P(A4) = 095, P(A1 N Az) = 038, P(A1 N A3) = 0.38,
P(Ay N A3) = 0.89, P(A; N Ay) = 0.37, P(A N Ay) = 0.88, P(A3 N Ay) = 0.94, which are the same as
the corresponding values in Example 2 of [6] for which the probabilities of all elementary conjunctions were not
provided. In that paper, two different degree 2 lower bounds, 0.96 and 0.97, were obtained corresponding to general
numerical algorithms for solving the linear programming problem. However, we have just seen that the lower bound
(3), maximized at I = {1, 4}, is 0.98. This provides another manifestation of the simplicity in the use of optimization
over subsets.

Example 6. This last example is from Chen [1] who uses not linear programming but Hamiltonian-type circuits to
derive hybrid degree 2 lower bounds based upon {S,, P(A; N Aj),1 < i < j < n}. His example for n = 6
yields the lower bound 0.925 while (3) is 0.930 which is based on the events A», As which are disjoint with
P(Ay) =0.72, P(A5) =0.21 and A U A5 = U?:l A; rendering the other four events redundant.

4. Final remarks

Maximization bounds involving only binomial moments over subsets appears to provide a simple yet effective
approach to finding good lower bounds on the probability of a union P(U!_, A;). In the examples considered, taken
from the literature, the resulting bounds improved those obtained by linear programming methods designed to cope
with an exponentially large number of constraints as n gets large. For moderate n, the maximum can quickly be found
by searching all cases. For large n it would be necessary to find an algorithm that finds the maximum. For instance (6)
directly compares B,, with B,_| and depending on the sign of the term in parentheses, inclusion of A, may increase
or decrease the bound. We may thus sequentially check which events should be included as a means of approaching
the maximizing bound.
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