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a b s t r a c t

We show that the formula of Faà di Bruno for the derivative of a composite function gives, in special cases,
the sampling distributions in population genetics that are due to Ewens and to Pitman. The composite
function is the same in each case. Other sampling distributions also arise in this way, such as those arising
fromDirichlet, multivariate hypergeometric, andmultinomial models, special cases of which correspond
to Bose–Einstein, Fermi–Dirac, and Maxwell–Boltzmann distributions in physics. Connections are made
to compound sampling models.
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1. Introduction

The purpose of this paper is to point out a remarkable
relationship1 between the formula by Faà di Bruno (di Bruno, 1855)
for the nth derivative of a composite function and some sampling
formulas in population genetics developed more than a century
later as well as well-known distributions in statistical mechanics.
These formulas arise as probability distributions on partitions. We
will show that di Bruno’s formula reduces to these distributions
in special cases, thereby providing a unifying connection among
them.

Recall that a partition of n is a way of writing n as a sum
of positive integers where the order of the summands does not
matter. Thus if n is written as

n = 1 + · · · + 1︸ ︷︷ ︸
b1times

+2 + · · · + 2︸ ︷︷ ︸
b2times

+ · · · + n︸︷︷︸
bntimes

the corresponding partition is denoted as b = (b1, . . . , bn) where
the notation reflects that integer i appears bi times in the partition
so that b1 +2b2 +· · ·+nbn = n and b1 +b2 +· · ·+bn = kwhere k is
the number of summands adding to n, that is the number of com-
ponents in the partition. For instance, the integer 4 can be written
E-mail address: hoppe@mcmaster.ca.
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as: 1+1+1+1; 1+1+2; 1+3; 2+2; 4. These correspond to the par-
titions: (4, 0, 0, 0); (2, 1, 0, 0); (1, 0, 1, 0); (0, 2, 0, 0); (0, 0, 0, 1)
with values of k equal to 4, 3, 2, 2, 1, respectively. A random parti-
tionΠn is a randomquantity taking values in the set of all partitions
of n and when n is arbitrary we denote it by Π .

One important random partition that occurs in population
genetics is known as the Ewens Sampling Formula (Ewens, 1972)

P[Πn = b] =
n!

[θ]n
θk

n∏
i=1

1
ibibi!

(1)

valid for any θ > 0 where [θ]n ≡ θ(θ + 1) · · · (θ + n − 1) is an
ascending factorial, with [θ]0 = 1. Here a sample of size n is taken
from a Poisson–Dirichlet population (Kingman, 1975; Watterson,
1976) P = (P1, P2, . . .), 0 < Pi < 1, i = 1, 2, . . . ,

∑
∞

i=1 Pi = 1,
representing the random frequencies of distinct species or alleles
in a neutral population, and bi counts the number of species
represented i times in the sample. P can be represented in the form
of a residual allocation model (Griffiths, 1980) in size-biased form
(P(1), P(2), . . .) using an urn model (Hoppe, 1984, 1987)

P(1) = Z1

P(n) = Zn
n−1∏
i=1

(1 − Zi), n ≥ 2 (2)

where the {Zi} are independent identically distributed Beta(1, θ)
random variables. The model (2) is known as the GEM distribution
in genetics (Ewens, 1990).

http://www.elsevier.com/locate/tpb
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A sampling formula due to Pitman (1992) also arises when
sampling from (2) where the {Zi} are still independent, however
not identically distributed, but rather as Beta(1−α, θ+ iα) random
variables, respectively, for some 0 < α < 1, θ + α > 0. The
corresponding partition distribution is

P[Πn = b] =
n!

[θ]n

k−1∏
j=0

(θ + jα)
n∏

i=1

([1 − α]
i−1)bi

i!bibi!
. (3)

There is another parameter range for which (3) defines a
distribution: α = −r, θ = Mr where M is a positive integer and
r > 0. Now the {Zi} are independent Beta(1 +

θ
M
, (M−i)θ

M
) random

variables and the residual allocation model has a finite number of
types with

P(1) = Z1

P(n) = Zn
n−1∏
i=1

(1 − Zi), 2 ≤ n ≤ M − 1

P(M) = 1 − P(1) − · · · − P(M−1).

(4)

The corresponding sampling formula (3) is then more com-
monly expressed as

P[Πn = b] =
n![M]k

[θ]n

n∏
i=1

(
[θ/M]

i

i!

)bi 1
bi!

(5)

where [M]k = M(M − 1) . . . (M − k + 1) is the descending factorial
k times starting at M. Notice that if k > M then [M]k = 0 implying
that this distribution concentrates on partitions with at most M
parts. In genetic terms, the partitions involve at most M distinct
alleles, with probability one. The model (4) describes a size-biased
relabelling of a symmetric Dirichlet distribution P = (P1, . . . , PM),
based on the order in which the different types enter a sample
(Hoppe, 1987, page 132). The equivalent sampling formula (5)
shows the multinomial roots of this case.

We now state the connection between di Bruno’s formula and
these partitions. Let g(x), f (x) be suitably differentiable functions
and consider the composite function h(x) = g(f (x)). Di Bruno’s
formula (di Bruno, 1855) states that the nth derivative of h(x) is

h(n)(x) =
∑ n!

b1! . . . bn!
g(k)(f (x))

n∏
i=1

(f (i)(x))bi

i!bi
(6)

where the sum is over all partitions b = (b1, . . . , bn) of the integer
n and k is the number of parts in the partition.

All three three sampling formulas (1), (3) and (5) bear a
striking resemblance to (6), yet a search of the relevant literature
did not turn up the very attractive relationship between these
two topics. Di Bruno’s formula was mentioned, but only in the
context of differentiation or composition of exponential generating
functions (Pitman, 2006). We show in this paper that (6) reduces
to these three partitions in special cases, as well as others that
occur in physics. We also provide a probabilistic explanation using
compounding processes.

For Ewens’ sampling formula it is appropriate to take

g(x) = eθx f (x) = − log(1 − x).

Then as shown below, (6) simplifies to an identity comprising
positive terms which can be identified as a probability distribution
given by (1). The same occurswith respect to (3), for instancewhen
θ > 0, using

g(x) =
1

(α(1 − x))
θ
α

f (x) = 1 −
(1 − x)α

α

and also for (5) with

g(x) = xM and f (x) =
1

(1 − x)θ/M
.

Remarkably, the composite function

h(x) =
1

(1 − x)θ

is the same in all three cases, meaning that different expansions of
the same function yield these different sampling formulas.

Interestingly, for (3) the choice of pair (g, f ) depends on
whether −α < θ < 0, θ = 0, or θ > 0, which may
shed some light on the distinction or origin of these partitions in
specific applications.Moreover, the distributions for samplingwith
replacement (multinomial), or sampling without replacement
(multivariate hypergeometric) from a finite population can also
be obtained from (6). Together with (5), special cases of these are
the familiar Maxwell–Boltzman, Bose–Einstein, and Fermi–Dirac
distributions of statistical mechanics in physics.

In this paper we make explicit, and explore, this fascinating
connection. On the one hand, we have probability distributions
arising from a probabilistic sampling process from a population.
On the other hand, we have an expansion of a composite function
that gives a probability distribution over partitions of n that has this
nice probabilistic interpretation. The similarity between di Bruno’s
formula and partitions in biology suggests that techniques and
results from one area may be of value in studying the other.

2. Ewens’ sampling formula

For arbitrary θ > 0 let

g(x) = eθx and f (x) = − log(1 − x)

so that

g(k)(x) = θkeθx, k = 0, 1, . . . and

f (i)(x) =
(i − 1)!
(1 − x)i

, i = 1, 2, . . . .

Hence

h(x) ≡ g(f (x)) =
1

(1 − x)θ
and h(n)(x) =

[θ]n

(1 − x)θ+n
,

n = 0, 1, . . . .

These formulas, substituted into (6), lead to

[θ]n

(1 − x)θ+n
=
∑

n!
θk

(1 − x)θ

n∏
i=1

(
(i − 1)!
(1 − x)i

)bi 1
i!bibi!

. (7)

Observe that (i−1)!
i!

=
1
i
and

∏n
i=1

(
1

(1−x)i

)bi
=

1
(1−x)

∑
ibi

=
1

(1−x)n
,

which shows that there is a common factor 1
(1−x)θ+n involving x on

both sides of (7) that can be cancelled, leaving the identity

[θ]n =
∑

n!θk
n∏

i=1

1
ibibi!

.

We divide both sides by [θ]n giving

1 =
∑ n!

[θ]n
θk

n∏
i=1

1
ibibi!

(8)

where the sum is over all partitions b = (b1, . . . , bn) of the integer
n and k ≡ b1 + · · · + bn is the number of terms in the partition,
which identifies each term on the right side of (8) as describing a
probability distribution over partitions of n

P[Πn = b] =
n!

[θ]n
θk

n∏
i=1

1
ibibi!

.

This is (1) and therefore we obtain Ewens’ Sampling Formula
in a purely analytical manner as the partition that arises from
an identity obtained by di Bruno’s formula, although not in its
sampling probabilistic context.
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The coefficient of θk in the expansion of [θ]n is the absolute value
of a Stirling number of the first kind, denoted as |Skn|. From (8) we
can read off

|Skn| =
∑

b:b1+···+bn=k

n!
n∏

i=1

1
ibibi!

a formula going back to Cauchy (Shepp and Lloyd (1966) and
Kaucký (1985)). According to Ewens (2004) the distribution of the
random number of terms Kn in the partition described by (1) is
given by

P[Kn = k] = |Skn|
θk

[θ]n

which thus also follows directly from the identity (8).
To summarize, we have shown that the expansion in powers

of x of the function h(x) =
1

(1−x)θ
when expressed as a composite

function to which di Bruno’s formula is applied leads to an identity
that is the distribution (1). We next turn to different pairs of
functions which give the other sampling formulas mentioned.

3. Pitman’s formula

3.1. 0 < α < 1, θ > 0

For 0 < α < 1, θ > 0 consider the pair of functions

g(x) =
1

(α(1 − x))
θ
α

and f (x) = 1 −
(1 − x)α

α
(9)

so that

g(k)(x) = [θ/α]
k 1
αθ/α

(1 − x)
θ
α and f (i)(x) =

[1 − α]
i−1

(1 − x)i−α
.

The parameter α cancels out in the composite function giving the
same h as in Ewens’ case

h(x) ≡ g(f (x)) =
1

(1 − x)θ
.

Now (6) becomes

[θ]n

(1 − x)θ+n
=
∑

n![θ/α]
k 1

αθ/α(1 − f (x))
θ
α +k

×

n∏
i=1

(
[1 − α]

i−1

(1 − x)i−α

)bi 1
i!bibi!

=
∑

n![θ/α]
k 1

αθ/α( (1−x)α

α
)

θ
α +k

×

n∏
i=1

(
[1 − α]

i−1

i!

)bi ( 1
(1 − x)i−α

)bi 1
bi!

=
∑

n![θ/α]
k αk

(1 − x)θ+αk

×

n∏
i=1

(
[1 − α]

i−1

i!

)bi 1
bi!

1
(1 − x)n−αk

.

The factor (1 − x)θ+n cancels from the denominator of both sides
and [θ/α]

kαk reduces to
∏k−1

j=0 (θ + jα), leaving

[θ]n = n!
∑ k−1∏

j=0
(θ + jα)

n∏
i=1

([1 − α]
i−1)bi

i!bibi!
. (10)

Finally, as before, we divide both sides by [θ]n to produce the
equivalent identity

1 =
n!

[θ]n

∑ k−1∏
j=0

(θ + jα)
n∏

i=1

([1 − α]
i−1)bi

i!bibi!
. (11)
Again, this identifies each term on the right side of (11) as
describing a probability distribution, namely (3). Although f (x) is
not defined for α = 0, nonetheless, the partition distribution
describedby (11) doesmakes sense ifwe letα → 0whereby Ewens
formula arises in this limit.

3.2. 0 < α < 1,−α < θ < 0

For 0 < β < 1, 0 < α < 1 let

g(x) = 1 − (1 − x)β and f (x) = 1 − (1 − x)α

so that

g(k)(x) =
β[1 − β]

k−1

(1 − x)k−β
and f (i)(x) =

α[1 − α]
i−1

(1 − x)i−α

h(x) = 1 − (1 − x)αβ and h(n)(x) =
αβ[1 − αβ]

n−1

(1 − x)n−αβ

Di Bruno’s formula becomes

αβ[1 − αβ]
n−1

(1 − x)n−αβ
=
∑

n!
β[1 − β]

k−1

(1 − x)αk−αβ

×

n∏
i=1

(
α[1 − α]

i−1

(1 − x)i−α

)bi 1
i!bibi!

=
∑

n!
β[1 − β]

k−1

(1 − x)αk−αβ
αk

×

n∏
i=1

(
[1 − α]

i−1

(1 − x)i−α

)bi 1
i!bibi!

which simplifies (by canceling a common factor αβ

(1−x)n−αβ on both
sides and absorbing the remainingαk−1 into the ascending factorial
[1 − β]

k−1) to

[1 − αβ]
n−1

=
∑

n!
k−1∏
j=1

(jα − αβ)
n∏

i=1

([1 − α]
i−1)bi

i!bibi!
. (12)

Multiplication of both sides of (12) by −αβ and setting θ = −αβ
leads to

[θ]n = n!
∑ k−1∏

j=0
(θ + jα)

n∏
i=1

([1 − α]
i−1)bi

i!bibi!
(13)

which is (10) except that θ is negative. However, the only negative
factors in (13) are θ on each side, corresponding to the first term
in each ascending factorial. Although θ < 0, when we divide
both sides of (12) by [θ]n the resulting (11) still defines a bonafide
probability distribution on partitions of n since θ cancels in the
numerator and denominator, leaving all terms positive.

3.3. 0 < α < 1, θ = 0

The remaining case of Pitman’s formula is 0 < α < 1, θ = 0 for
which a third pair of functions (g, f ) is required. Let

g(x) = − log(1 − x) and f (x) = 1 − (1 − x)α

and then

g(k)(x) =
(k − 1)!
(1 − x)k

and f (i)(x) =
α[1 − α]

i−1

(1 − x)i−α

h(x) = −α log(1 − x) and h(n)(x) = −α
(n − 1)!
(1 − x)n

.

Di Bruno’s formula gives

α(n − 1)!
(1 − x)n

=
∑

n!
(k − 1)!
(1 − x)αk

n∏
i=1

(
α[1 − α]

i−1

(1 − x)i−α

)bi 1
i!bibi!



546 F.M. Hoppe / Theoretical Population Biology 73 (2008) 543–551
which simplifies to

1 = n
∑ k−1∏

j=1
(jα)

n∏
i=1

([1 − α]
i−1)bi

i!bibi!

which is (11) for θ = 0 (there is a common factor θ in numerator
and denominator that cancels before setting θ to 0 in (11)).

4. Symmetric dirichlet partitions

For θ > 0 and integer M ≥ 1, let

g(x) = xM and f (x) =
1

(1 − x)θ/M

so that

g(k)(x) = [M]kx
M−k, k = 0, 1, . . . ,M and

f (i)(x) =
[θ/M]

i

(1 − x)θ/M+i
, i = 0, 1, . . .

where [M]k = M(M − 1) . . . (M − k + 1) is the descending factorial
k times starting at M. As in the two previous cases h again has the
form

h(x) ≡ g(f (x)) =
1

(1 − x)θ
.

Di Bruno’s formula (6) becomes

[θ]n

(1 − x)θ+n
=
∑

n![M]k
1(

(1 − x)
θ
M

)M−k

×

n∏
i=1

(
[θ/M]

i

(1 − x)
θ
M +i

)bi 1
i!bibi!

=
∑ n![M]k

(1 − x)θ− kθ
M

n∏
i=1

(
[θ/M]

i

i!

)bi 1
bi!

1

(1 − x)
kθ
M +n

.

Oncemore, the factor involving x can be eliminated after whichwe
may divide both sides by [θ]n, leaving the identity

1 =
n!

[θ]n

∑
[M]k

n∏
i=1

(
[θ/M]

i

i!

)bi 1
bi!

(14)

which identifies another random partition Πn of n. The individual
terms in the sum of this identity determine the probability
distribution (5).

4.1. Probabilistic interpretation I

We will rewrite (5) in order to interpret it as a more familiar
object.

P[Πn = b] = n!
M!

(M − k)!

1
(θ+n−1)!
(θ−1)!

1
n∏

i=1
bi!

n∏
i=1

(
θ/M + i − 1

θ/M − 1

)bi

=
M!

k!(M − k)!

1
(θ+n−1)!
n!(θ−1)!

k!
n∏

i=1
bi!

n∏
i=1

(
θ/M + i − 1

θ/M − 1

)bi

=

(
M
k

) (
k

b1,...,bn

) n∏
i=1

(
θ/M+i−1
θ/M−1

)bi
(

θ+n−1
θ−1

) (15)

where
(

k
b1,...,bn

)
=

k!∏n
i=1 bi!

is a multinomial coefficient. Such a
partition arises from a random sample of size n taken from a
symmetric Dirichlet population P = (P1, . . . , PM) described by the
density

d(p1, . . . , pM−1) =
Γ(θ)

Γ(θ/M)M

M−1∏
i=1

p
θ/M−1
i p

θ/M−1
M ,

0 ≤ pi ≤ 1, p1 + · · · + pM−1 ≤ 1
where pM = 1 − p1 − p2 − · · · − pM−1.

To see that (15) results from such a sample, consider a random
sample of size n taken from a population given by (5), let Xj =

#{j : type j is in the sample}, and let x = (x1, . . . , xM) be a set
of (ordered) occupancy numbers. Then the distribution of X =

(X1, . . . , XM) is given by the expectation of a multinomial with
random probabilities
P[X1 = x1, . . . , XM = xM]

= E

[(
n

x1, . . . , xM

) M∏
j=1

P
xj
j

]

=

(
n

x1, . . . , xM

) ∫
· · ·

∫ M−1∏
j=1

p
xj
j p

xM
M

Γ(θ)

Γ(θ/M)M

×

M−1∏
j=1

p
θ/M−1
j p

θ/M−1
M dp1 . . . dpM−1

=

(
n

x1, . . . , xM

) ∫
· · ·

∫ M−1∏
j=1

p
xj+θ/M−1
j pxM+θ−1

M

×
Γ(θ)

Γ(θ/M)M
dp1 . . . dpM−1

where the integral is over the simplex {0 ≤ pi ≤ 1, 1 ≤ i ≤

M − 1, p1 + · · · pM−1 ≤ 1}. Therefore

P[X1 = x1, . . . , XM = xM] =

(
n

x1, . . . , xM

)
Γ(θ)

Γ(θ/M)M

×

M∏
j=1

Γ(θ/M + xj)

Γ(θ + n)
.

For a partition b of the integer n, consider all sets of occupancy
numbers {x1, . . . , xM} satisfying bi = #{j : xj = i}, 1 ≤ i ≤ n,
so that bi counts the number of times integer i appears among the
{xj}. The distribution of X then induces a probability distribution
on the set of all partitions b of the integer n. Let Πn represent
the corresponding random partition. We compute the probability
distribution of Πn by counting how many samples result in a
specified b = (b1, . . . , bn). Suppose that b has k parts. First
select which of the M types will be represented in such a sample.
There are

(
M
k

)
choices. Next decide which of the k types will be

represented b1 times, b2 times, . . . , bn times. Since b1 +· · ·+bn = k

there are
(

k
b1,...,bn

)
selections. This counts the number of samples

with unordered occupancy numbers {x1, . . . , xM} and since each
gives the same partition b it follows that

P[Πn = b] =

(
M

k

)(
k

b1, . . . , bn

)
P[X1 = x1, . . . , XM = xM]

=

(
M

k

)(
k

b1, . . . , bn

)(
n

x1, . . . , xM

)
Γ(θ)

Γ(θ/M)M

×

M∏
j=1

Γ(θ/M + xj)

Γ(θ + n)

=

(
M

k

)(
k

b1, . . . , bn

)
n!

M∏
j=1

xj!

Γ(θ)

Γ(θ/M)M

×

M∏
j=1

Γ(θ/M + xj)

Γ(θ + n)
.
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But
∏M

j=1 xj! =
∏n

i=1 i!
bi ,
∏M

j=1 Γ(θ/M + xj) =
∏n

i=1 Γ(θ/M + i)bi ,

and Γ(θ/M+i)
i!Γ(θ/M)

=

(
θ/M+i−1
θ/M−1

)
which recovers (15) and shows that

another expansion of the same composite function h(x) =
1

(1−x)θ

now produces the sampling formula from a symmetric Dirichlet.
In the special case θ = M, (5) simplifies to the partition from the

familiar uniform or Bose–Einstein distribution.

4.2. Probabilistic interpretation II

Let

G(x) = xM and F(x) =
(1 − φ)θ/M

(1 − φx)θ/M

where 0 < φ < 1, with composite function

H(x) = G(F(x)) =
(1 − φ)θ

(1 − φx)θ
.

Di Bruno’s formula applied to the pair (G, F) still leads to the
partition (5).

G and F are probability generating functions although G
corresponds to a degenerate random variable concentrated at the
value M. Thus consider a population comprised of a fixed number
M of species having Xj individuals of species j or, equivalently,
sample a random number Xj of species j where the Xj are
independent identically distributed random variables with p.g.f.
F(x) and probability distribution

P[X = i] =

(
θ/M + i − 1

θ/M − 1

)
φi(1 − φ)θ/M.

The sum N =
∑M

j=1 Xj has p.g.f. H and (negative-binomial)
distribution

P[N = n] =

(
θ + n − 1

θ − 1

)
φn(1 − φ)θ.

The conditional distribution of the Xj given N is well-known and
given by

P[X1 = x1, . . . , XM = xM|N = n]

=

M∏
j=1

(
θ/M+xj−1

θ/M−1

)
φxj(1 − φ)θ/M

(
θ+n−1
θ−1

)
φn(1 − φ)θ

=
n!Γ(θ)

Γ(θ + n)

M∏
j=1

Γ(θ/M + xj)

xj!Γ(θ/M)

and now follow the argument round (15).

5. Symmetric multivariate hypergeometric

For integers M ≥ 1, C ≥ 1 let

g(x) = xM and f (x) = xC

so that h(x) = xMC. This gives

g(k)(x) =

{
[M]kx

M−k if k ≤ M
0 if k > M

f (i)(x) =

{
[C]ix

C−i if i ≤ C
0 if i > C

and (6) becomes

[MC]nx
MC−n

=
∑

n![M]kx
MC−Mk

n∏
i=1

(
[C]ixC−i

i!

)bi 1
bi!
which reduces to

1 =
n!

[MC]n

∑
[M]k

n∏
i=1

([C]i)
bi

i!bibi!

and the corresponding partition distribution is

P[Πn = b] =
n!

[MC]n
[M]k

n∏
i=1

([C]i)
bi

i!bibi!
. (16)

If i > C the product on the right side of (16) is zero unless
the corresponding bi = 0. As a result, the only partitions b that
contribute to the sum in (16) must be restricted to be of the form
b = (b1, b2, . . . , bC, 0, 0, . . . , 0). Since bi is the number of times
that i is represented in thepartition, thismeans that any integer can
be represented at most C times. Similarly, if a partition has k > M
parts then [M]k = 0, meaning this partition does not contribute to
the sum and as a result b1 +b2 +· · ·+bn ≡ b1 +b2 +· · ·+bC ≤ M so
the probability distribution (16) concentrates on partitions with at
most M parts.

5.1. Probabilistic interpretation I

Consider a finite population of size MC comprised of M
subpopulations each of size C, or equivalently, consider M boxes
labelled 1, 2, . . . ,M each filled with C balls. Take a simple random
sample of size nwithout replacement from this population and let
X ≡ (X1, . . . , XM) represent the ordered occupancy numbers. The
distribution of X is given by

P[X1 = x1, . . . , XM = xM] =

M∏
j=1

(
C
xj

)
(

MC
n

) . (17)

Let Πn denote the random variable describing the partition
induced by X. By symmetry, each sample of size n with the same
partition b has the same probability. Consider then a partitionwith
k parts (in this case representative subpopulations). Each sample
with k parts can be obtained by first selecting the k subpopulations
to be involved, in

(
M
k

)
ways, then determining the number of

individuals to be chosen from each of the k subpopulations, in(
k

b1,...,bn

)
ways, and finally, by selecting the individuals from each

subpopulation, in
∏n

i=1

(
C
i

)bi
ways. As there are altogether

(
MC
n

)
ways of selecting n objects from MC this results in

P[Πn = b] =

(
M
k

) (
k
b

) n∏
i=1

(
C
i

)bi
(

MC
n

) . (18)

The right hand sides of (16) and (18) can be shown to be the same
and thus di Bruno’s formula for the choice g(x) = xM, f (x) = xC

leads to the partition distribution obtained from a sample without
replacement from a finite population of size MC that is comprised
ofM subpopulations each of size C. The random partitionΠn counts
howmany subpopulations are represented b times, without regard
to which ones they are.

Kingman (1980) has cited an example by Watterson of the
partition where

b1 = n, b2 = b3 = · · · = bn = 0 with probability 1 (19)

which cannot be expressed as a certainmixture. It is easily checked
that (19) is a special case of (16) where C = 1 and our analysis thus
positions Watterson’s example as arising from sampling without
replacement, a connection that is obscured when C = 1.

In the special case C = 1, (5) also simplifies to the partition from
the familiar Fermi–Dirac distribution.
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5.2. Probabilistic interpretation II

It is not hard to check that di Bruno’s formula applied to the
functions

G(x) = xM and F(x) = (1 − φ + φx)C

where 0 < φ ≤ 1 also leads to (16) because the dependence
on φ cancels from both sides of (6). This suggests another
probabilistic interpretation. Again consider a finite population
of size MC comprised of M subpopulation each of size C but
now instead of taking a simple random sample of size n from
the overall population, sample individually a random number
of individuals from each subpopulation according to a binomial
distribution with C trials and success probability φ. (Note. This is
equivalent to selecting each of the MC individuals independently
with probability φ. The difference between this sampling and that
in the previous subsection is that the size of the sample was fixed
at n earlier but is random here.)

In place of (17) consider the conditional probability

P[X1 = x1, . . . , XM = xM|N = n] =

M∏
j=1

(
C
xj

)
φxj(1 − φ)C−xj(

MC
n

)
φn(1 − φ)MC−n

=

M∏
j=1

(
C
xj

)
(

MC
n

)
where N =

∑M
j=1 Xj which is the same probability distribution as

(17) but now conditional on the total sample size, giving another
probabilistic model whose partition distribution is (16).

6. Symmetric multinomial

In this last example, M ≥ 1 is an integer and θ > 0. Let

g(x) = xM and f (x) = eθx

resulting in h(x) = eMθx. This gives

g(k)(x) =

{
[M]kx

M−k if 1 ≤ k ≤ M
0 if k > M

f (i)(x) = θieθx if i = 1, 2, . . .
h(n)(x) = (Mθ)neMθx if n = 1, 2, . . .

and (6) becomes

(Mθ)neMθx
=
∑

n![M]ke(Mθ−kθ)x
n∏

i=1

(
θieθx

i!

)bi 1
bi!

which simplifies to

1 =
n!

Mn

∑
[M]k

n∏
i=1

1
i!bibi!

and the corresponding partition distribution is

P[Πn = b] =
n!

Mn
[M]k

n∏
i=1

1
i!bibi!

. (20)

As for the case of sampling from a symmetric Dirichlet population,
if k > M then [M]k = 0 so the distribution concentrates on
partitions with at most M parts.
6.1. Probabilistic interpretation I

For a probabilistic interpretation of (20) suppose that a sample
X ≡ (X1, . . . , XM) of size n is taken from a symmetric multinomial
population P ≡ (P1, . . . , PM) where P is multinomial with M cells
and equally likely success probability vector p ≡ (p1, . . . , pM) =

( 1
M
, . . . , 1

M
). Then

P[X1 = x1, . . . , XM = xM] =

(
n

x1, . . . , xM

) M∏
j=1

( 1
M

)xj

=

(
n

x1, . . . , xM

) 1
Mn

(21)

and so for a partition b with occupancy numbers x1, . . . , xM where
b1 + · · · + bn = k

P[Πn = b] =

(
M

k

)(
k

b1 . . . bn

)
P[X1 = x1, . . . , XM = xM]

=
[M]k

k!

k!
n∏

i=1
bi!

n!
M∏
j=1

xj!

1
Mn

=
n!

Mn
[M]k

n∏
i=1

1
i!bibi!

(22)

which shows that (20) arises from sampling a symmetric multino-
mial population or the familiar Maxwell–Boltzman distribution.

6.2. Probabilistic interpretation II

Apply di Bruno’s formula to the functions

G(x) = xM and F(x) = eθ(x−1)

to also obtain (20). Consider an infinite population with M types
and take a Poisson,mean θ, number of individuals Xj independently
from each type. With N =

∑M
j=1 Xj consider

P[X1 = x1, . . . , XM = xM|N = n] =

M∏
j=1

e−θθ
xj

xj!

e−θM(θM)n

n!

=
1
Mn

1
M∏
j=1

xj!

which is the same as (21) and as in (22) leads to

P[Π = b|N = n] =
n!

Mn
[M]k

n∏
i=1

1
i!bibi!

which is the same probability distribution as (20) but now
conditional on the total sample size.

7. Compound sampling

The choices of functions (g, f ) are not unique to the partitions
they generate. The pairs for the Ewens, Pitman (θ > 0), and
symmetric Dirichlet partitions in Sections 2–4 were chosen for
simplicity of their composite functions and because they produce
the same composite function h(x) =

1
(1−x)θ

in all cases. This
function can be differentiated directly to reveal its nth derivative
without recourse to di Bruno’s formula which therefore provides
three different expansions of the same function, each recognizable
as a distinct partition distribution.

Each function is a power series with non-negative coefficients
and in the second of the probabilistic interpretations in Sections 4–
6, g and f were modified, maintaining their functional structure,
into probability generating functions. The corresponding partitions
produced by di Bruno’s formula were interpreted as the partitions
that arise when a random sample is taken from a population
comprised of a finite number M of types, whereby independent
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identically distributed numbers of individuals X1, . . . , XM are
sampled from each type.

A similar interpretation can be made for the formulas in
Sections 2 and 3, except that the number of types will be infinite
andM replaced by a random variable before the Xj are determined.
For instance, in the derivation of the identity yielding Ewens’
formula, replace g(x) = eθx and f (x) = − log(1 − x) with

G(x) = eλ(x−1) and F(x) =
c − log(1 − φx)

c − log(1 − φ)
(23)

respectively, where 0 < φ < 1, c ≥ 0. G is the p.g.f. of a Poisson
randomvariablewithmean λ and F is the p.g.f of a randomvariable
X with distribution

P[X = i] =


c

c − log(1 − φ)
i = 0

1
c − log(1 − φ)

φi

i
i = 1, 2, . . . .

(24)

The special case c = 0when there is nomass at the origin is Fisher’s
logarithmic series distribution.

The new composite function becomes

H(x) = G(F(x)) = eλeλ
c−log(1−φx)
c−log(1−φ) =

( 1 − φ

1 − φx

)θ

(25)

where we have set

θ =
λ

c − log(1 − φ)
. (26)

Apply di Bruno’s formula to the pair (G, F) and Ewens’ formula still
results.

The occurrence of Ewens’ formula in this special case of
compound samplingwhen c = 0 is not new and di Bruno’s formula
in this special case is thus a manifestation of a result of Watterson
(Section 2.3 of Watterson (1974)) who considers a population
comprised of a Poisson number of species K for which, given
K = k, the number Xj of individuals of species j are conditionally
independently identically distributed according to the logarithmic
distribution (24). Let N denote the total number of individuals, bi
the number of species of type i, and Π be the random variable
representing the random partition of the integer N. Watterson’s
result states that conditional on N = n the distribution Π is given
by Ewens’ formula (1) where θ =

−λ
log(1−φ)

as in (26) when c = 0.
Wenote that, unlike in the random partitionΠn defined previously
for fixed n, here n is replaced with a negative-binomial random
variable N with “success” probability 1 − φ having a distribution
given by

P[N = n] =

(
θ + n − 1

n

)
φn(1 − φ)θ (27)

and whose p.g.f. is the composite function (25) in di Bruno’s
formula.

Next, we show that Watterson’s result holds even when c 6= 0
for the p.g.f. in (23) following which we confirm an analogous
result for the Pitman formulas. This will require deriving new
sampling formulas when some species have 0 representatives and
then taking the marginal distributions.

Let Π ?
≡ (B0,Π ) denote the partition of N that includes the

(random) number B0 of the K species having 0 observations. Thus,
a typical value of Π ? may be denoted by b?

= (b0, b1, . . . , bn) ≡

(b0, b) where b = (b1, . . . , bn) is the usual partition involving only
observed species. As before write k = b1 + · · · + bn. We first derive
the conditional distributions P[Π ?

= (b0, b1, . . . , bn)|N = n].
Theorem 1. The conditional distribution of the partition Π ? of the
compound sampling process described by the model (23) is given by:

P[Π ?
= b?

|N = n] =
e−θc(θc)b0

b0!

n!

[θ]n
θk

n∏
i=1

1
ibibi!

. (28)

Proof. From (23) and (25)

P[K = k + b0] =
e−λλk+b0

(k + b0)!
, k + b0 ≥ 1

P[N = n] =
[θ]n(1 − φ)θφn

n!
, n ≥ 1

(29)

with X as in (24), since

P[Π ?
= b?

|K = k + b0] =

(
k + b0
b?

)
P[X = 0]

b0
k∏

j=1
P[X = xj]

=

(
k + b0
b?

)
P[X = 0]

b0
n∏

i=1
(P[X = i])bi (30)

where b is the partition induced by {x1, . . . , xk}, then

P[Π ?
= b?

|N = n] =
P[Π ?

= b?,N = n]

P[N = n]

=
P[Π ?

= b?
]

P[N = n]
because {N = n} is redundant in the numerator

=
P[Π ?

= b?, K = k + b0]

P[N = n]
because {K = k + b0} is redundant

= P[Π ?
= b?

|K = k + b0]
P[K = k + b0]

P[N = n]

=
(k + b0)!

b0!
n∏

i=1
bi!

(
c

c − log(1 − φ)

)b0 n∏
i=1

(
φi

i(c − log(1 − φ))

)bi

×
e−λλk+b0

(k + b0)!

n!

[θ]n(1 − φ)θφn

from (24), (29) and (30), which simplifies to (28) using (26).

Corollary 1. If Π is the partition corresponding to the observed
species obtained from the compound sampling process (23) then the
marginal conditional distribution P[Π = b|N = n] is given by Ewens
sampling formula and conditionally on N = n, B0 has a Poisson
distribution with mean θc and is independent of Π .

Proof. This follows immediately from the factorization on the
right side of (28).

We next obtain conditional distributions P[Π ?
= b?

|N = n] and
P[Π = b|N = n] that will correspond to the Pitman formulas. First
we require the corresponding G, F.

When 0 < α < 1, θ > 0, in place of the functions g, f in (9) use
the p.g.f.

G(x) =
(1 − φ)r

(1 − φx)r
and F(x) =

1 − c(1 − τx)α

1 − c(1 − τ)α
(31)

respectively, where 0 < c ≤ 1, 0 < τ < 1, r > 0 so

H(x) =
(1 − φ)r

(1 − φF(x))r

1 − φF(x) =
1 − c(1 − τ)α

− φ

1 − c(1 − τ)α
+

φc(1 − τx)α

1 − c(1 − τ)α
.

To recover the structure needed to explicitly differentiate H and
obtain an identity, we need to set φ = 1 − c(1 − τ)α simplifying H
to
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Table 1
Sampling formulas and probability generating functions

Sampling formula p.g.f. of K p.g.f. of X p.g.f. of N

Ewens eλ(x−1) c−log(1−φx)
c−log(1−φ)

(1−φ)θ

(1−φx)θ

Pitman 0 < α < 1, θ > 0 (1−φ)r

(1−φx)r
1−c(1−τx)α

1−c(1−τ)α
(1−τ)θ

(1−τx)θ

0 < α < 1,−α < θ < 0 1−d(1−φx)β

1−d(1−φ)β
1−c(1−τx)α

1−c(1−τ)α
1−dcβ(1−τx)αβ

1−dcβ(1−τ)αβ

0 < α < 1, θ = 0 d−log(1−φx)
d−log(1−φ)

1−c(1−τx)α

1−c(1−τ)α
d−log c−α log(1−τx)
d−log c−α log(1−τ)

Dirichlet xM (1−φ)θ/M

(1−φx)θ/M
(1−φ)θ

(1−φx)θ

Multinomial xM eθ(x−1) eθM(x−1)

Multivariate hypergeometric xM (1 − φ + φx)C (1 − φ + φx)CM
H(x) =
(1 − φ)r

(c(1 − τx)α)r
=

(c(1 − τ)α)r

(c(1 − τx)α)r
=

(1 − τ)θ

(1 − τx)θ

where θ = αr. Application of di Bruno’s formula leads to (11).
For 0 < α < 1,−α < θ < 0 use the p.g.f.

G(x) =
1 − d(1 − φx)β

1 − d(1 − φ)β
and F(x) =

1 − c(1 − τx)α

1 − c(1 − τ)α
(32)

where 0 < c, d, τ,φ ≤ 1 so that

H(x) =
1 − d(1 − φF(x))β

1 − d(1 − φ)β

1 − φF(x) =
1 − c(1 − τ)α

− φ

1 − c(1 − τ)α
+

φc(1 − τx)α

1 − c(1 − τ)α
.

Again, require φ = 1 − c(1 − τ)α, giving

H(x) =
1 − dcβ(1 − τx)αβ

1 − dcβ(1 − τ)αβ

and di Bruno’s formula leads to (11) with θ = −αβ. Note that τ = 1
or φ = 1 is permitted here but not in the previous case nor in the
next one following.

Here, for the final case, 0 < α < 1, θ = 0 take

G(x) =
d − log(1 − φx)

d − log(1 − φ)
and F(x) =

1 − c(1 − τx)α

1 − c(1 − τ)α
(33)

where 0 < τ,φ < 1, 0 < c ≤ 1, d ≥ 0 with φ = 1 − c(1 − τ)α and
then

H(x) =
d − log c − α log(1 − τx)

d − log c − α log(1 − τ)

so again di Bruno’s formula leads to (11).
Notice that the function F is the same in all three cases. For

θ > 0,G is the p.g.f. of a negative-binomial random variable; for
−α < θ < 0 it has the same form as F; for θ = 0,G is the p.g.f.
of a random variable distributed with Fisher’s logarithmic series
distribution except allowing a non-zero constant term for c 6= 1.
For the Ewens case, the Pitman with θ > 0, and the Dirichlet, the
p.g.f. of N is negative-binomial. Table 1 lists the p.g.f. versions of
the composite functions to which di Bruno’s formula was applied
above, including those described previously in Sections 4–6 where
the probabilistic interpretations already anticipate compound
sampling except that the number of species is constant at M. Note
that θ = αr in the first Pitman case while θ = −αβ in the
second.

Theorem 2. The conditional distributions of the partitions Π ? of the
compound processes described by the models (31)–(33) are given by:

P[Π ?
= b?

|N = n]

=
[

θ
α

+ k]b0(1 − c)b0c
θ
α +k

b0!

n!

[θ]n

k−1∏
j=1

(θ + jα)
×

n∏
i=1

([1 − α]
i−1)bi

i!bibi!
. (34)

Proof. For the case (31), note that

P[K = k + b0] =
(1 − φ)rφk+b0 [r]k+b0

(k + b0)!
, k + b0 ≥ 1

P[N = n] =
(1 − τ)θτn

[θ]n

n!
, n ≥ 1

(35)

while if X is a generic random variable with p.g.f. F in (31), then

P[X = i] =


1 − c

1 − c(1 − τ)α
i = 0

c

1 − c(1 − τ)α

τiα[1 − α]
i−1

(i − 1)!
i ≥ 1.

(36)

Now follow the proof of Theorem 1 to obtain

P[Π ?
= b?

|N = n]

= P[Π ?
= b?

|K = k + b0]
P[K = k + b0]

P[N = n]

=
(k + b0)!

b0!
n∏

i=1
bi!

(1 − c

φ

)b0 (αc

φ

)k

τn
n∏

i=1

([1 − α]
i−1)bi

i!bi

×
(1 − φ)rφk+b0 [r]k+b0

(k + b0)!

n!

(1 − τ)θτn[θ]n

=
[r]k+b0(1 − c)b0(αc)k

b0!

(1 − φ)r

(1 − τ)θ

n!

[θ]n

n∏
i=1

([1 − α]
i−1)bi

i!bibi!

from (30), (35) and (36). Since 1 − φ = c(1 − τ)α and θ = rα the
fraction (1−φ)r

(1−τ)θ
= cr . Substitute [r]k+b0 = [r + k]b0 [r]k and combine

[r]k with αk as [r]kαk
= αk∏k−1

j=0 (r + j) =
∏k−1

j=0 (θ + jα) to arrive at

[r + k]b0(1 − c)b0cr+k

b0!

n!

[θ]n

k−1∏
j=1

(αr + jα)
n∏

i=1

([1 − α]
i−1)bi

i!bibi!

and use θ = αr to complete the proof of (34).
For the second parameter range (32) we use

P[K = k + b0] =
d

1 − d(1 − φ)β

φk+b0β[1 − β]
k+b0−1

(k + b0)!
,

k + b0 ≥ 1

P[N = n] =
dc

1 − dc(1 − τ)αβ

τnαβ[1 − αβ]
n−1

n!
, n ≥ 1

and then decompose P[Π ?
= b?

|N = n] in the same way to get

P[Π ?
= b?

|N = n]

=
(k + b0)!

b0!
n∏

i=1
bi!

(1 − c

φ

)b0 (αc

φ

)k

τn
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×

n∏
i=1

([1 − α]
i−1)bi

i!bi
dφk+b0β[1 − β]

k+b0−1

(1 − d(1 − φ)β)(k + b0)!

×
n!(1 − dcβ(1 − τ)αβ)

dcβτnαβ[1 − αβ]n

=
[1 − β]

k+b0−1(1 − c)b0αk−1ck−β

b0!

n!

[1 − αβ]n−1

×

n∏
i=1

([1 − α]
i−1)bi

i!bibi!

using 1−d(1−φ)β
= 1−dcβ(1−τ)αβ. We express [1−β]

k+b0−1 as
[k−β]

b0 [1−β]
k−1 andmultiply [1−β]

k−1 byαk−1 to get
∏k−1

j=1 (θ+jα)
in the numerator, where θ = −αβ. The ascending factorial in the
denominator is

∏n−1
j=1 (θ + j) and if each of these factorials in the

numerator and denominator ismultiplied by θ then the lower limit
in both products starts at 0 and we have derived (34).

Finally, for the last case (33) we have

P[K = k + b0] =
φk+b0

(k + b0)(d − log(1 − φ))
, k + b0 ≥ 1

P[N = n] =
ατn

n(d − log c − α log(1 − τ))
, n ≥ 1

and this time express the factor (k + b0 − 1)! in the numerator as
(k − 1)![k]b0 when simplifying to arrive at (34).

We next derive the conditional distributions P[Π = b|N = n]
corresponding to the partitions of the observed species. These are
obtained as the marginal distributions of P[Π ?

= b?
|N = n] by

summing over all b0.

Corollary 2. If Π is the partition corresponding to the observed
species obtained from the compound sampling processes (31)–(33),
then the marginal conditional distribution P[Π = b|N = n] is given
by (3).

Proof. We have expressed Theorem 2 in such a way that (3)
appears as a factor in (34). To obtain the marginal conditional
distribution we sum on b0. But

∞∑
b0=0

[
θ
α

+ k]b0(1 − c)b0c
θ
α +k

b0!
= 1

in view of the expansion
∑

∞

i=0
[A]i

i!
ti =

1
(1−t)A

leaving (3).
When c = 1 Theorem 2 is not applicable because b0 = 0 and

Π ? becomes Π . In this case, Corollary 2 obtains directly and the
analysis simplifies considerably.
8. Conclusion

We have shown that Faà di Bruno’s formula for the derivative
of a composite function simplifies to a probability distribution on
partitions of the integers in some cases. Among the distributions
that can be obtained are those arising in population genetics and
in statistical mechanics. In the cases of the Ewens, Pitman, and
symmetric Dirichlet sampling formulas, the composite function
is the same. The key to the use of the formula lies in finding
pairs of functions whose derivatives and the derivative of the
composite function can be computed directly.We have also shown
that when the composite function is interpreted as a compound
probability generating function then the partition coincides with
the corresponding conditional partition for selecting a random
number of individuals from a finite or random number of species.
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