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Abstract

The simple device of maximization over subsets of events can provide substantial improvement over the Dawson–Sankoff degree
two lower bound on the probability of a union of events and can also exceed a sharper bound that uses individual and pairwise joint
event probabilities developed by Kuai, Alajaji, and Takahara. In each of their examples, the maximized bound achieves the exact
probability of the union using a subset of events containing no redundant events of the original set of events.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

One of the outstanding second degree lower bounds on the probability of a union of events {Ai, i = 1, . . . , n}
is due to Dawson and Sankoff [1].

Theorem 1 (Dawson and Sankoff [1]).
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N is the random variable counting the number of events that occur, the summation is over all integers 1� i1 <

i2 < · · · < ij �n, and � is the constant

� = 2S2,n

S1,n

−
⌊

2S2,n

S1,n

⌋

with �x� the largest integer in x. The dependence of � on n, S1,n, S2,n is omitted from the notation.
Bound (1) is optimal in the sense that if g(S1,n, S2,n) is any other universal lower bound on P

(⋃n
i=1Ai

)
that depends

on n events only through S1,n, S2,n then
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Optimality is proven by exhibiting, for any fixed, feasible values of {n, S1,n, S2,n} a sample space and set of events {A�
i }

having the same values for the binomial moments as S1,n, S2,n and achieving equality in (1), which therefore gives
the minimum probability of any union of events consistent with these {n, S1,n, S2,n}. This type of optimality is called
Fréchet optimality since the idea can be traced back to Fréchet [3] (also Section 7 of [6,7]). Proof of optimality is in
[1] although not stated explicitly, and also the structure of the {A�

i } can be read from the proof of minimality there.
Recently, Kuai et al. [5] obtained the following interesting bound that parallels the structure of (1), but in place of

S1,n, S2,n uses the individual and pairwise joint event probabilities

P(Ai), P (Ai ∩ Ai), 1� i < j �n. (2)

Theorem 2 (Kuai et al. [5]).
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They prove that (3) is always at least as large as (1) and illustrate improvement with numerical examples. They also
prove that (3) improves the following bound of de Caen [2] that also uses (2).

Theorem 3 (de Caen [2]).
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The purpose of this note is to observe that these three bounds can be further improved by maximization over subsets.
The same systems of events used in [5] demonstrate the increase obtained. In all four cases, the exact probability of
the union is obtained by this simple device.

2. Main result

For m < n
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and the Dawson–Sankoff bound can be applied to the right-hand side of (5) which is based on fewer events. Since the
Dawson–Sankoff bound is optimal, it would seem reasonable that the optimal bound based on fewer events should be
no better than the optimal bound based on the full set of n events. Interestingly, computation showed this not to be the
case, and it is therefore possible to obtain larger, hence better, Dawson–Sankoff bounds for the same union based on
fewer events. The same strategy can be applied to (3) and (4).

What motivated this work was the observation that all the examples in [5] shared the property that the union of the n
events {Ai} could be obtained as a union of fewer events. In systems I, II, and III A3 ∪ A5 ∪ A6 ⊆ A1 ∪ A2 ∪ A4 while
in system IV, A7 ⊆ A1 ∪ A2 ∪ A5 ∪ A6. Thus, events that were already included in a union of fewer events could be
removed prior to computing any bounds.

Therefore, let I be a subset of {1, 2, . . . , n} and restrict attention to the events {Ai} for i ∈ I. Define
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Theorem 4.
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3. Examples

To examine the possible effect of maximization over subsets of events, we present in Table 1 the bounds considered
in [5] together with the new bounds (6)–(8). (Note that the corresponding entries in the last row of Table 5 of [5] for
system IV, including P(

⋃n
i=iAi), appear to be systematically too large by an amount 0.0002.) There are four systems

of n = 6 events in the first three systems and n = 7 in the last one.
Observe that (3) is larger than (1) or (4) in all cases. However, when the Dawson–Sankoff bound is optimized over

subsets I ⊆ {1, 2, . . . , n} in (6) it exceeds (3) in all four systems and in fact achieves the exact probability of the union.
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Table 1
Comparison of bounds

System n P
(⋃n

i=iAi

)
(6) (7) ( 8) DS Kuai et al. de Caen

(1) [5] [2]

I 6 0.7890 0.7890 0.7890 0.7332 0.7007 0.7247 0.7087
II 6 0.6740 0.6740 0.6740 0.6296 0.6150 0.6227 0.6154
III 6 0.7890 0.7890 0.7890 0.7349 0.6933 0.7222 0.7048
IV 7 0.9687 0.9687 0.9687 0.8978 0.8879 0.8909 0.8757

The same must then be true for the optimized versions of the Kuai et al. bound. Moreover, in both (6) and (7) the
optimized bounds are achieved for the same subsets I. These are:

system I: I = {1, 2, 4}, I = {1, 2, 5},
system II: I = {1, 2, 4}, I = {1, 2, 3, 4},
system III: I = {1, 2, 4}, I = {1, 2, 3, 4},
system IV: I = {2, 3, 5, 6}, I = {2, 3, 4, 5, 6}.
So, in system I,

⋃6
i=1Ai = A1 ∪ A2 ∪ A4 and the exact probability of the union can be obtained by applying either the

Dawson–Sankoff or the Kuai et al. bound to either A1 ∪ A2 ∪ A4 or A1 ∪ A2 ∪ A5. Similarly, the union in the other
systems can be obtained with fewer events and the resulting bounds are the exact probabilities. Thus, in systems II and
III the exact probability can be obtained using either A1 ∪ A2 ∪ A4 or A1 ∪ A2 ∪ A3 ∪ A4. Although A3 is redundant
in both of these systems, its inclusion does not decrease the value of the two bounds. Finally, in system IV, the exact
value can be achieved with A2 ∪ A3 ∪ A5 ∪ A6 or A2 ∪ A3 ∪ A4 ∪ A5 ∪ A6 with A4 redundant.

4. Final remarks

For any set of events A1, A2, . . . , An for which equality holds in (1)—and on account of Fréchet optimality such
a set of events exists—equality must also hold in (3), since (3) is always at least as large as (1). In all four of the
examples considered from Kuai et al. [5], such equality is achieved using a subset which contains no redundant events
of the original set of events. Inasmuch as equality in (1) and (3) is actually achieved with given sets, this suggests that
these examples may be rather unrepresentative of a general situation, and raises obvious questions about their structure.
More generally, there are questions about the effect on bounds of redundant events, and about the effect of additional
nonredundant events. These will be addressed in a more extensive study.

We note that Kounias [4] has suggested maximizing the second-degree Bonferroni lower bound over subsets and
actually cited [1] for a numerical comparison, but made no mention of maximizing it over subsets.

For the second-degree Bonferroni lower bound, inclusion of redundant events cannot improve the bound, as we now
show.

Theorem 5. Suppose An ⊆ ⋃n−1
i=1 Ai and is therefore redundant. Then

S1,n − S2,n �S1,n−1 − S2,n−1.
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