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Introduction

Overview of the hydrodynamic problem

» Goal: asymptotic description of water waves over a variable
bottom, in the long wave limit.

» Basic assumption: large scale topography of the bottomeof th
fluid region is known, but details of the topography are uniao
(and therefore subject to modeling).

» A homogenization problem of separation of scales (or not).
Our work is a reappraisal gRosales & Papanicolaou (1983)]
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Introduction

Overview of the hydrodynamic problem: conclusions

1. Periodic bottom topography; the problem homogenizes tolly
give a KdV equation with effective coefficientSraig, Guyenne,
Nicholls & Sulem (2005)]

2. Random bottom topography given by a stationary ergodic
process which is mixing,e. which decorrelates with spatial
distance.

3. There remaimealization dependent effedtsthe equations as
important as the nonlinearity and the dispersion, given by a
canonical process;dxB,, (X) (white noise).

4. The solution has bottransmitted(nonlinear) andscattered
(linear) components. Skewness of the statistics of thearand
process can stabilize or destabilize solutions.
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Introduction

Euler’'s equations
» Euler's equations A =0
N-Ve =0 on the variable bottomy = —h + 3(x)

Nonlinear boundary conditions on the free surface

dp+3(Ve)2+an=0

On = X’t.
8t77+(9x77'8x99—(9y99—0} y r/(,),

Figure: Cartoon of a fluid domain with a varying bottom boundary
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Long waveregime

» Hamiltonian form: variableg(x,t), £(x,t) = o(X, n(X,t),1)
1 [e.9]
oo =5 [ cmmerofe @

» G(n, 3) is the Dirichlet — Neumann operator for the fluid domain

» Conservation laws

M= [n(x)dx, mass
H = [ Jox 3IVel? dydx+ 3 [7*(x)dx energy

Momentum is not conserved, due to the bottom variatiohs

Walter Craig McMaster University

Nonlinear Water Wavesin Random Bathymetry



Long waveregime

Scaling regime

» long wave scaling regime:

X=ex , B(X) = ef'(X/e)
eg'(X) =€(x) e (X) = n(x)

» Hamiltonian for this problem (Boussinesq regime)

H(U’:ﬁ/ﬁ) - (2)
% /(h 20/ (X/e) — €2 ([)”Dtank(hD)ﬁ’) (X/e))|Dxe'[2dX

+3 [+ 2¢onoye - Temie)ax+ o)
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Random bathymetry

Stationary ergodic processes

Realizations of the bottom topography= (3(x, w) are taken from a
statistical ensemble € )

» Probability spacé), M, P)

» Ergodic one parameter group of measure preserving

transformationg 7y }yer such thats(x, yw) = f(x—y,w) (and a
filtration of the measurable set$/, y € R adapted tq/7y }ycr)

» Case lperiodic5(x+ p) = 3(x)
» Case 2mixing conditions

IP(ANTy(B)) = P(AP(B)| < (y)vP(APB),  (3)

for setsA € Mgy andB € Myy~q,
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Random bathymetry

Mixing rate
In case 2, we require that the mixing rate satisfy

/ T2y dy < oo (4)
0

Thevarianceof the processi(x, w) is defined to be

05 = 2/000 E(8(0,w)B(0, yw)) dy,

Lemma
If B(x,w) = dxy(x, w) for some stationary processc C' then

o3 =0
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Random bathymetry

separation of scales: periodic case

Theorem
Suppose that(x) is periodic, and thaf (X) € S. Then

/ﬁ/(X/E)f(X) dX = E(v) /f(X) dX + O(N)
for anyN, whereE(+) % J§~dx).

In the periodic cas€Case 1) the contributions of the new terms
homogenizes, giving a perturbation to the effective wagedpdue to
the following result.
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Random bathymetry

effective coefficients: periodic case

» SinceE(") = 0the two new terms are therefore
o [ Fx/2IDxePax =0+ O
. / (5 (x/<)D tanhhD) (X /<) ) Dx¢’ PaX

= E(/3’Dtank(hD)/3’)/|Dx§’|2dX+O(sN)

» the effective wavespeed is
¢ = g(h— £*E(5'(x)D tani(hD) ' (x)))
Lemma
There is a strict inequalitg® < ¢ for nonzeros'.
» The analysis extends to the situation whefe) = O(1)
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Random bathymetry

separation of scales: random case

In the mixing case (Case 2) there agelization dependent
contributions which are significant. In particular

Theorem
Let~(x;w) be a stationary mixing ergodic process with ratgy)
satisfying(4). Thenas — 0

[l ()X = [ (E0)+ V0, BBLOX0) (X)X o).
whereB,,(X) is normal Brownian motion.

This principally affects the wavespeed and can affect thkilgly in
the KdV regime
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Random bathymetry

random KdV equation

This results in the following long wave system with random
coefficients

orr = —x(co(X,e,w)r + 2br + e2(crAir + cor?))
1
ors = Ox(co(X,e,w)s) — 2 9/h(0505B.(X)r)

where the random wavespeed is
G3(X, e,w) = g(h — £¥/2630¢B,,(X) — £2akav)

constants; andc; are effective (homogenized) coefficients of
dispersion and nonlinearitykqy is a wavespeed adjustment, and
b = c3E(32) is statistics dependent and determines stability.
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Random bathymetry

random KdV equation

This results in the following long wave system with random
coefficients

orr = —x(co(X,e,w)r + 2br + e(c1Air + cor?))
1
ors = Ox(co(X,e,w)s) — 2 9/h(0505B.(X)r)

where the random wavespeed is
GB(X,e,w) = g(h — £¥2050xB,,(X) — %akqv)

constants; andc; are effective (homogenized) coefficients of
dispersion and nonlinearitykqy is a wavespeed adjustment, and
b = c3E(32) is statistics dependent and determines stability.
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Random bathymetry

The form of a random solution
» Solve the deterministic equation

9:Q = c105Q + Q% + bQ

» Introduce random characteristic coordinates
205 [g
X=X(Y.Ti0) = (V4 TVa- o)~ =5 380 (T VT

» The solutionr (X, T) is given up too(=?) by
r(X,T) = xQ(Y(X,T;w),eT)
= Qv(Y(X,T;w),e®T)oxY (X, T;w)

» Consequences: thEnaseundergoes Brownian motion, the
amplitudeis modulated by white noise.
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Random bathymetry

Random characteristic coordinates
» The characteristic equations

dXx
a - Co(x,{{;W) ) X(O,E;W) =Y

32,
~ \/gh(l— o axB ( ) EzaKdv)

Too singular in general for solutions of SDESs.
» Regularized problem

dx

dt
where3 ¢ Cimplies that the characteristic speedX, <; w) is
bounded uniformly irC*.

» Orbits are uniformly bounded i6*, and by Donsker’s theorem
the limit points of orbits distribute like Brownian motiodg)

/ ) EZaKdV)

(X, g5 w)

Walter Craig McMaster University

Nonlinear Water Wavesin Random Bathymetry



Random bathymetry

Scattering

» The scattered wavefield is solved f&iX, T) by the method of
characteristics. Sét' .= T + (X — 6)//gh.

S(X,T) = so(X + /ghT)
o8 X+\/_hT
+7h 5B (0)0xQ(Y (0, T w), e2T') df
X

» Notice the irregularity in the scattered wavefield due to the
multiple derivatives of Brownian motiofi%B,,(X) which interact
with the random solution(X, T; w).
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Random bathymetry

Instabilities
The coefficienb = c3E(33) determines stability

Proposition
If the statistics of the ensemhl@, M, P) are reversible, thef = 0

However there are reasonable situations in which this ishetase

Figure: Cartoon of a fluid domain with a bottom boundary wiith- 0
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modulating statistics

Bottom variations on multiple scales

» Fluid domains bounded by a bottom with large scale as well as
small scale variations witk(51(-, X)) = 0

B(X, X, e,w) = PBo(X, &) + B1(X X, &,w)

» Furthermore, the statistics of the bottom may vary

05,(X) =2 /Ooo E(61(0, X;w)31(0,X; 7yw)) dy

Figure: Cartoon of a fluid domain with a random bottom boundary
with varying statistics
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modulating statistics

Stationary arrays of mixing processes

Theorem

Let~(x, X; w) be a smooth (irX) family of stationary mixing ergodic
processes with uniform mixing ratey) satisfying(4). Define the
local variance to be

2X) = [ EOCXwn (X)) dy

— 0o

Thenas — 0
[l X () 8X = [ (B X)) VB (X)0xE (X)) (X) ol

whereB,,(X) is normal Brownian motion.
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modulating statistics

Random characteristics

» Random characteristic coordinates

dXx
a - Co(X,E;w) ) X(O,E;W) =Y

has trajectories which describe a diffusion
X(t,Y,e5w) = (Y++/ght)

t
- %ﬂ /0 efo(Y +/ghs + e®akav(Y + \/ghs ds

t
S22 [ v+ Vahede.(
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modulating st.

Thank you
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