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Navier — Stokes equations

Abstract

» The Kolmogorov & Obukov laws for isotropic turbulence
» A new estimate on Leray weak solutions
» Estimates on Kolmogorov spectra

» Restrictions on the spectral behavior of weak solutions
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Navier — Stokes equations

Navier — Stokes equations
Theequations of motioof an incompressible viscous fluid
ou+ (u-Viu=vAu—Vp+f
V-u=0 D)
u(x,0) = up(x) , V-up =0 initial data
Forcing termf : V- f =0 Takef to be zero at present
Space-time domain

D=R® (xt)eDxR":=Q

Alternatively D = T° and
(xt) e T*xRT =Q

A bounded smooth domain C R3; we leave this open.
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Navier — Stokes equations

Weak solutions
The usual definition of aveak solutiorovert € [0, T] is that:

1. Integrability conditions
ue L>([0,T);L3(D)) N L2([0, T); H*(D)) .
pe Lic(Q) @)

2. The pair(u, p) is adistributional solutiorof (1)

3. Theenergy inequalityis satisfied

t
%/ |u(x,t)\2dx+u/ / |Vu(x, s)|? dxds< %/ |ug(x)|2 dx
D o Jo D @)
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Navier — Stokes equations

The existence of weak solutions

Theorem (Leray (1934))

Givenu € L?(D) divergence free, then there existseast one weak
solutionto (1) globally in time. Weak solutions satisfy

ueLX®(L?)

as well as
ue Cy(L2: weak topology

A lot is known about such solutions, for example that
3 2 3

ue Lg(Ly), —+§:§

Uniqueness and global regularity are unknown
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Fourier transforms

» The Fourier transform ofi(x, t) existsa.e. t

ack,t) = / e KXy t) dx

L
(27T)3/2 .
andd(-,t) € Lo(L2)
» The Fourier transform is smooth in
Theorem
The functioni(k, t) is C' as a function of for everyk
(whenD = T2 at least).

» Define theenergy spectruras the spherical integrals

1 i -
Bk 1) = /k la(k,t)2dSk), 0<k<+4oo (4)

whereV is a characteristic unit volume.
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Power spectrum

» Plancherel’s identity
AHmWw—M)M

» Sobolev norms

Kﬁﬁm>——wwné

» dimensional analysjs where[«] denotes dimension

2(d+1) 2 3
W=z, [0f="% k== ECO=1%
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Reynold’s number
There is a literature on theeynold’s numbedefined in terms of the
energy spectrum

» Re:=UL/v a dimensionless parameter
» Intrinsic Reynold’s number (Gammond & Gage)

A u W::(V_S)”“

Re = , =
1K fo <

for e := 2v [, k?E(k) dr, the rate of energy dissipation
» Proposal for a mathematical Reynold’s number

in the light of the classical Fuijita - Kato existence theorem
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Kolmogorov’s hypotheses

For high Reynolds number flows which exhibit fully developed
turbulence, Kolmogorov supposed:

» The small scale turbulent motions of a fluid atatistically
isotropic

» The statistics of these motions are determined by the two
parameters ande
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Kolmogorov’s scaling law

» Prediction:For high Reynold’s number fully developed turbulent
flows, for  in an inertial range, the energy spectrum has
universal behavior

Ex () = Coc™/3k % (5)

Proof : These are the unique exponents for which the
dimensions match
In fact the exponents are independent of space dimension

» Considerable experimental and numerical evidence has been
garnered to support this conjecture.

» Goal:to give mathematically rigorous upper bounds on the range
of validity of the Kolmogorov scaling law
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SDSC simulation by Turbulence Spectrum
Chowasia, Donzis and Yeung
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Estimates on weak solutions

» The energy inequality (3) can be viewed as the statementtbat
ball Br(0) C L2 is aninvariant sefor Navier — Stokes flow

U(-) € Br(0) = ¥t>0,u(-t) € Br(0)

» Another invariant set. Define
A= {(0(K))kers : [K/|O(K)| < Re} N'BRr(O)

Theorem (A. Biryuk (2003))
If R? < vR; thenA s an invariant set for Navier — Stokes flow.

Proof given at end of talk if there is time
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Global estimates on weak solutions

» Boundson L?O(Lffo’1> (Fu)), supposing that the initial data lies
in the setA, then for allk € R3,

sup|a(k, t
suplale )] < g

(6)

» Time average quantitiasbey better estimates:

Corollary
Forall k « R3and all T > 0, thenv [ |u(k, )2ds< & \k\“

» The quantitysup |||k|0(-, t)[|L~ scales like thé3\V/ norm
sup ||oxu(-, t)[| 1 (for which there are no known bounds).
P. Constantin (1992) has a global boundson ||V x u(-,t)|| 1
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Estimates on spectra

Proposition (1)
The spectrum of a weak solution with initial datac A satisfies a
global upper bound

1 R R? 47R?
E(k,t) = v /k_ |u(k,t)|2d51k) < V—Ii247m2 =~V 1

Proposition (2)
Time averages of energy spectra haveng@orm decay rateWeak
solutions with initial dataug € A satisfy

1 /T 4rr? R?
- t)d a(k, 1)) dgk)dt < 1 _ Ok 2
T/O (+, VT//k| )7 dSk) T v = O
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rate of decay

How does theenergy spectrurof a solution compare to the
Kolmogorov prediction.

Theorem
The exponent is larger than5/3.
Is this a problem with the theory?
» One resolution could be that Navier — Stokes flows which akhib

spectral behavior like the Kolmogorov law are in the suppbd
probability measur® on L?(D)-divergence-free.

» And it could be the case that for &l R;, sup® NA = (.

Walter Craig McMaster University

Bounds on Kolmogorov spectra



Navier — Stokes equations

Better resolution of this dilemma
Bounds on thénertial rangewhere this spectral behavior is manifest
Theorem

The upper and lower bounds for the inertial range, ~»] over which
the Kolmogorov spectral functidfx does not violate our estimates

— CoV \3/5 2/5
= (47TR1) . (7)
1, R \31
he = ?(ycov) 2 ®

Maximum time for which this behavior persistsTis: k1 = r2(T)

11/5
Ty R (A g
vet/5 \CEVe

McMaster University
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Comparison with the classical quantities

» Kolmogorovlengthscaley := (13/¢) 14

() < ()

K 13 VCVT/ &2
i v 1/2
» Kolmogorovtimescalery := (E)
11/5
V\1/2 Ry ( A  \1/5
= — T _—
TK (5) < o 2475 (COV)G)

This is as it should, since these two times signify differthimgs
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Comparison with a Navier — Stokes velocity field

Various definitions oproximity to i (k) ~ /3|k|*1/6

» Definition 1: [luc — u(-,t)[| 2 < Cy.
Sincelk ¢ L? this is not a satisfactory criterion.
» Dyadic decomposition = }; Aju with support

suppAju(k) € A
whereA := {271 < k| < 21}

Definition 2: || Aj(u — uk)||:2*%/3 < C; for all j in the range
log, (k1) <j < logy(r2)
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continued comparison

» There is the question as to whetligr-, t) has spectral behavior
for individual solutions, or does it hold in aaveragesense, over
a statistical ensemble of solutions with probability measu

» Therefore study thensemble averages

(E(e0) = [ otk ) dsig

JIK=x

Definition 3: Use Definition 2 for ensemble averages of
solutions.

» In fact P should be ergodic with regard to NS flow, so that
asymptotically thé> average should approximate the time
average

]
(E(k, 1)) ~ %/O E(r, 1) dt
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Theorem Bounds on Kolmogorov specira

In order thatu(x, t) exhibit Kolmogorov-like behavior of its spectral
energy function, in either of the senses of Definition 2 orriasn 3
over an inertial rangex1, x|, then the three constants

k1, K2, To

must satisfy the above three relations, up to a constant.
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proof of theL® (L™ (Fu)) estimate

» For fixedk the fieldt(k) € C2 C C3

Because of incompressibility- (k) = 0

Suppose thatu(-)| 2 <R
» The Fourier transform satisfies

aa(k) = —v|k2ak) — ika/u(k— kp) - G(ky) dky + f (K t)
= X(U)k

» Consider the vector fielel(u) when|t(k)| = Ry/|k|. Then
re(0(k) - X(u)k) < —v[k[?(Re/[K))? + (Ru/|K|) kIR + [f| (Re/[K])
which isnegativewhenR? + [f (k)| /|k| < vRy
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proof of corollary

» A fact about the vector fiele(0) is that solutions obey
T
0k T~ 00 + 20 [ K0 Dt
0

T
= 2|m[/0 G(k) : / ﬂ(k— k]_) : kll](kl)) dkldt]

(settingf = O for simplicity)
> Writing 12(k) = (2)3 [] [k|*|a(k, t)]2 dt
this gives an inequality

12(k) — 2Rl (k) — (2vR1)?2 < 0
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Thank you
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