
Transformation theory of Hamiltonian PDE
and the problem of water waves

Walter Craig

Abstract This set of lecture notes gives (i) a formal theory of Hamiltonian systems
posed in infinite dimensions, (ii) a perturbation theory in the presence of a small
parameter, adapted to reproduce some of the well-known formal computations of
fluid mechanics, and (iii) a transformation theory of Hamiltonian systems and their
symplectic structures. A series of examples is given, starting with a rather complete
description of the problem of water waves, and, following a series of scaling and
other simple transformations placed in the above context, a derivation of the well
known equations of Boussinesq and Korteweg deVries.

1 Hamiltonian systems

A Hamiltonian system is given in terms of a Hamiltonian function H : M → R,
where M is the phase space. We will restrict ourselves to phase spaces which are
Hilbert spaces, denoting the inner product between two vectors V1,V2 ∈ T (M) by
〈V1|V2〉. The symplectic structure is as usual given by a two-form ω on (M), which
can be represented by the inner product, namely ω(V1,V2) = 〈V1|J−1V2〉, where,
because of the antisymmetry of two-forms, the operator J satisfies J−T = −J−1.
The Hamiltonian vector field XH is defined through the relation dH(V ) = ω(V,XH)
which is asked to hold for all V ∈ T (M). The system of equations that we study,
known as Hamilton’s canonical equations, is given by

v̇ = XH(v) , v(0) = v0 . (1)
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The inner product enters into the definition of the gradient of functions on M, which
is in particular that for all V ∈ T (M), dH(V ) = 〈grad vH|V 〉, therefore Hamiltonian
vector fields are expressed by

XH = Jgrad vH(v) . (2)

We will denote the solution map, or the flow, for the initial value problem for system
(1) by v(t) = ϕt(v0). From the usual theory of ordinary differential equations, when-
ever the Hamiltonian vector field XH(v) is C1(M,T (M)) (usually meaning when the
Hamiltonian H(v) itself is C2(M,R)) then the flow is defined and unique, at least lo-
cally in time. The disclaimer is that this regularity property holds very rarely the case
when equation (1) describes a partial differential equation (the BBM equation is a
notable exception), and much effort has gone into the study of the well posedness of
the initial value problem and the properties of the solution map for numerous impor-
tant examples of evolution equations. Furthermore, in this effort it is not clear that
the property of being a Hamiltonian system is of particular importance in general.
Nonetheless, because of its interest in various special cases, and because Hamilto-
nian partial differential equations (PDE) appear naturally in many areas of physics,
it seems reasonable to take seriously the analogy between Hamiltonian dynamical
systems and PDEs. This is one purpose of the presentation in this note.

2 Partial differential equations as Hamiltonian systems

It seems most useful to discuss Hamiltonian PDEs with a good set of examples.
These are supplied by problems in physics, and in particular the ones I bear in mind
most often come from the problems in wave propagation in fluid mechanics.

(i) The wave equation

Consider a scalar field u(x, t) defined for x ∈ Ω ⊆ Rd which satisfies the equation

∂
2
t u = ∆xu−g(u,x) , u(x, t) = 0 when x ∈ ∂Ω . (3)

This can be written in the form of equation (1); indeed define

H(u, p) :=
∫

Ω

1
2 p2 + 1

2 |∇u|2 +G(u,x)dx , (4)

where ∂uG = g. Then the second order equation (3) can be equivalently written as a
first order system of PDEs

u̇ = p = grad pH (5)
ṗ = ∆u−∂uG =−grad uH .
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The gradient is taken with respect to the L2(Ω) inner product, which dictates as well
which Hilbert space we should propose for M. Actually, as operators such as ∆ are
unbounded, the initial value problem should normally be posed only on an appro-
priate subdomain of M. In any case, this problem is in the form of a Hamiltonian
system with v = (u, p)T and

v̇ = JgradvH , J :=
(

0 I
−I 0

)
. (6)

We will say that a Hamiltonian system with J of this form is in Darboux coordinates.

(ii) Burger’s equation

A famous example in the theory of shoch waves is Burger’s equation, which can be
written in Hamiltonian form as well.

∂tw = w∂xw x ∈ R1 . (7)

Define the Hamiltonian as
H :=

∫
R

1
6 w3 dx , (8)

from which we compute the form of Hamiltonian’s canonical equations

ẇ = ∂x( 1
2 w2) = Jgrad wH , J := ∂x . (9)

Notice that the symplectic structure is given by an operator with no direct finite di-
mensional analog; it furthermore is not invertible, meaning that our formal discus-
sion of the representation of the symplectic form in section 1 has to be taken with a
grain of salt. It is well known that every nonconstant solution of Burger’s equation
develops discontinities, or shocks. The standard law of conservation of the Hamil-
tonian function, H(ϕt(w)) = H(w) holds for smooth solutions, however it does not
hold in most cases for time t after the time T of formation of a shock.

(iii) The Korteweg deVries equation

The classical Korteweg deVries (KdV) equation was derived as a model equation
for the propagation of waves in the surface of a fluid. The beautiful fact about the
KdV is that it is an example of an infinite dimensional completely integrable sys-
tem, with algebraic integrals viewed in the proper coordinates. This integrability is
not the topic of the present discussion. Rather, we show that it can be posed as a
Hamiltonian PDE, and furthermore we discuss its relationship to fluid dynamics.
The KdV equation for a function r(X , t)is normally written as

∂tr =− 1
6 ∂ 3

X r +3r∂X r . (10)
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This takes the form of a Hamiltonian system with Hamiltonian

H :=
∫
R

1
12 (∂X r)2 + 1

2 r3 dX , J = ∂X . (11)

One easily checks that this is in the form (1), which in this context is

ṙ = ∂X grad rH . (12)

The nonlinearity g(X ,r) = ∂X (3r2/2) is not the only one of interest. In particular the
case ∂X r3 is a Hamiltonian PDE which is also a completely integrable system. Re-
placing either of the above two equations with a general nonlinear term g(X ,r) also
results in a Hamiltonian PDE, which is sometimes considered as a model dispersive
evolution equation which is not completely integrable.

(iv) The Boussinesq system

Another well known PDE which was originally derived in the study of water waves
is the Boussinesq system,

∂t

(
p
q

)
=

(
0 ∂X

∂X 0

)(
p+ 1

2 q2

qq+∂ 2
X q+ pq

)
. (13)

This system of equations is a variant of a common one studied by Zakharov [13],
and it has been shown to be another example of a completely integrable Hamiltonian
PDE in Kaup [10] and Sachs [11]. The Hamiltonian for the system (13) is given by

H := 1
2

∫
R

p2 +q2− (∂X q)2 + pq2 dX , (14)

with a symplectic structure given by the matrix operator

J :=
(

0 ∂X
∂X 0

)
(15)

which is already in appearance in the above system of equations (13).

We now have a number of examples in hand, many of which stem originally from
the study of water waves, that is the fluid dynamical problem of wave propagation
in the surface of a body of fluid. A natural question is as to how these systems are
related to each other. In particular we note that among these systems the number of
dependent variables are different, the number of independent variables is different,
and the symplectic structures are also changed from one system to another. In order
to address this question, even on the formal level that is given in these lectures,
we will undertake a detailed description of the problem of water waves itself from
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the point of view of the equation as an infinite dmensional Hamiltonian dynamical
system.

3 The problem of water waves

The equations of evolution for the free surface of a body of water in the influence of
gravity as a restoring force are a classical example of a system of Hamiltonian PDEs
for which the structure of the equations as such has led to important developments
in fluid dynamics. I will first describe the system of equations in standard Eule-
rian coordinates, after which the formulation of the problem as a Hamiltonian PDE
can be derived. The fluid domain is given by S(η) := {x ∈ Rd−1, y ∈ (−h,η(x))},
where we are assuming that the free surface is given as the graph of the function η ;
Γ (η) := {(x,y) : y = η(x)}. Normally the dimension is taken to be either d = 2,3,
although mathematically it makes sense for it to be any integer d ≥ 2. The force
of gravity is take to act vertically, given by F = −g(0,1). One of the unknowns of
the problem is the time dependent fluid domain S(η) defined in terms of the func-
tion η(·, t). The other unknowns are the components of the fluid velocity u(x,y, t) at
every point in space and time in the fluid domain.

In S(η) the fluid velocity vector field is taken to satisfy the conditions of incom-
pressibility and irrotationality, respectively

∇ ·u = 0 , ∇∧u = 0 .

The latter is the condition that the vector field u is given in the form of a potential
flow; u = ∇ϕ at each instant of time, while the former states that the potential ϕ is
harmonic in S(η);

∆ϕ = 0 .

Furthermore, on the solid bottom boundary of S(η) the fluid velocity is taken to have
no normal component; N ·u = 0, hence the potential satisfies Neumann boundary
conditions on this component of the domain boundary;

N ·∇ϕ = 0 .

All of the time dependent and nonlinear content of the problem is thus expressed in
the boundary conditions posed on the free surface Γ (η), namely

∂tη = ∂yϕ −∂xη ·∂xϕ (16)

∂tϕ = −gη − 1
2 |∇ϕ|2 ,

known respectively as the kinematic and the Bernoulli conditions. The first bound-
ery condition follows from the fact that a fluid particle which originates on the free
surface will remain on the free surface under time evolution, so that a tangent vector
T to its trajectory in space-time must always be orthogonal to the space-time normal
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vector N to the free surface; N ·T = 0. The Bernoulli condition simply represents
an expression of the Euler equations for an inviscid fluid, in integrated form and
evaluated on the free surface which itself is a surface of constant pressure.

The energy H of the system of equations for fluid motion with a free surface
is straightforward to express, indeed it is the sum of kinetic and potential energy
contributions;

H = K +P :=
∫
Rd−1

∫
η(x)

h
|u|2 dydx+

∫
Rd−1

∫
η(x)

h
gydydx (17)

=
∫
Rd−1

∫
η(x)

h

1
2 |∇ϕ|2 dydx+

∫
Rd−1

g
2 η2 dx−C , (18)

where the constant C is irrelevant to the dynamics and can be neglected. It is useful
to rewrite the kinetic energy by integrating by parts.

K =
∫
Rd−1

∫
η(x)

h

1
2 |∇ϕ|2 dydx =−

∫
Rd−1

∫
η(x)

h

1
2 ϕ∆ϕ dydx

+
∫
Rd−1

1
2 ϕN ·∇ϕ dSbottom +

∫
Rd−1

1
2 ϕN ·∇ϕ dSfreesurface .

Because the velocity potential is harmonic and satisfies Neumann bottom boundary
conditions, the first two terms of the right hand side vanish. Denoting the boundary
values on the free surface Γ (η) by ξ (x) = ϕ(x,η(x)), we have then

K =
∫
Rd−1

1
2 ξ N ·∇ϕ dSfreesurface .

We are taking care to distinguish between ϕ the potential function itself, and ξ its
values on the free surface Γ (η). The elements of Laplace’s equation that remain in
this expression are the normal derivative of the potential ϕ on the free surface. It is
useful to describe this quantity in terms of the boundary values ξ (x) and an integral
operator on the free surface itself.

Definition 1. (Dirichlet – Neumann operator) For the fluid domain S(η) defined
by the function η ∈ C1, give boundary values ξ (x) on the free surface Γ (η), and
consider their harmonic extension ϕ(x,y) to the fluid domain satisfying Neumann
bottom boundary conditions. The Dirichlet – Neumann operator is defined by the
normal derivative of ϕ on the free surface, namely

G(η)ξ (x) = (∂y−∂xη(x) ·∂x)ϕ(x,η(x)) = R(N ·∇ϕ)(x,η(x)) , (19)

where R =
√

1+ |∂xη |2 is a normalization factor so that G(η) is self-adjoint on
L2(dx).

The Hamiltonian (17) can be conveniently written in terms of G(η), indeed follow-
ing [7] we write

H =
∫
Rd−1

1
2 ξ G(η)ξ + g

2 η2 dx . (20)
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Theorem 1. (Zakharov [12]) There exist canonical variables for the water waves
problem (16), in which it can be written in the form (1) in Darboux coordinates,
with Hamiltonian (20).

Proof. Our derivation of the canonical conjugate variables is based on first prin-
ciples of mechanics. Given the kinetic energy K and the potential energy P, the
Lagrangian for the water waves problem is clearly

L = K−P . (21)

We should express this in terms of the quantities (η , η̇) (i.e. tangent space variables),
for which we use the kinematic condition (16),

η̇ = ∂yϕ −∂xη ·∂xϕ = G(η)ξ .

The Lagrangian is thus

L(η , η̇) = 1
2

∫
Rd−1 η̇Gη)η̇ − g

2 η2 dx . (22)

From this expression the Legendre transform dictates that the canonical conjugate
variables are (η ,∂η̇ L) = (η ,G−1(η)η̇) = (η ,ξ ). These are precisely the variables
presented by Zakharov in [12], in terms of which one may give the water waves
Hamiltonian (20).

ut

Therefore the equations for water waves can be rewritten as a Hamiltonian system
in Darboux coordinates;

η̇ = grad ξ H = G(η)ξ (23)

ξ̇ = −grad η H =−gη −grad η K .

It is interesting to remark that the expressions for K and grad η K involve derivatives
of the Dirichlet – Neumann operator with respect to perturbations of the domain
S(η). This idea was already discussed by Hadamard [8][9] in his Collège de France
lectures in 1910 and 1916, in the context of the Green’s function for Laplace’s equa-
tion on a domain in Rd . In these lectures he explicitly mentions the possibility of
hydrodynamical applications.

4 The Dirichlet - Neumann operator

Any analysis of the water wave in the above formulation depends upon a de-
tailed knowledge of the Dirichlet – Neumann operator. The fluid domain S(η) is
given by η(x) defining the free surface. Given ξ (x) the boundary values for the
velocity potential, then ϕ(x,y) is its harmonic extension to S(η) which satisfies
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the appropriate Neumann bottom boundary conditions. The principal facts about
G(η)ξ (x) = ∂yϕ(x,η(x))− ∂xη · ∂xϕ(x,η(x)) that we use are contained in the
lemma.

Proposition 1. Suppose that η ∈C1. Then G(η) satisfies the following properties:

1. G(η) is positive semidefinite.
2. It is self-adjoint (on an appropriatly chosen domain).
3. G(η) maps H1(Γ ) to L2(Γ ) continuously.
4. As an operator G(η) : H1(Γ )→ L2(Γ ) it depends analytically upon η ∈BR(0)⊆

C1(Γ ), for a nonzero value of R.

The latter item entails questions of the bounded of singular integrals on hyper-
surfaces, and was proved in the case d = 2 by Coifman & Meyer [2], and in the case
d ≥ 2 in [6] using the fundamental results of Christ & Journé [1]. In particular it
implies the existence of a convergent Taylor expansion for the operator.

Lemma 1. The Taylor expansion of the Dirichlet – Neumann operator is given by
the expression

G(η)ξ = ∑
j≥0

G( j)(η)ξ (24)

where each G( j)(η) is homogeneous of degree j in η . Explicitely,

G(0)
ξ (x) = |Dx| tanh(h|Dx|)ξ (x) (25)

G(1)(η)ξ (x) = Dx ·ηDx−G(0)
ηG(0)

ξ (x) (26)

G(2)(η)ξ (x) = 1
2 (G(0)

η
2D2

x +D2
xη

2G(0)−2G(0)
ηG(0)

ηG(0))ξ (x) . (27)

The terms G( j)(η) in the Taylor expansion are polynomial expressions in the quan-
tities Dx and G(0) of order j + 1, however for η ∈ C1 these terms are nevertheless
bounded from H1 → L2. I is because of the form of the operator which is related
to a multiple commutator; [η , . . . j× . . . [η ,D j

x]] = (−1) j j!(∂xη) j. With regard to
this series for the Dirichlet – Neumann operator, the water waves Hamiltonian it-
self is analytic on an appropriately chosen subset of , and possesses a Taylor series
expansion about the equilibrium solution (η ,ξ ) = 0, namely

H(η ,ξ ) =
∫
Rd−1

1
2 ξ G(0)

ξ + g
2 η

2 dx+ ∑
j≥3

1
2

∫
Rd−1 ξ G( j−2)(η)ξ dx

= ∑
j≥2

H( j)(η ,ξ ) , (28)

where H( j)(η ,ξ ) is homogeneous of degree j with respect to the variables (η ,ξ ).
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5 Perturbation theory

Suppose that the Hamiltonian function H depends upon an additional parameter ε;
H(v;ε) = H(0) +εH(1) + . . .εmH(m) +εm+1R(v;ε), for ε ∈ E a space of parameters.
It is natural to approximate orbits v(t;ε) by those of the truncated problem

v̇ = Jgrad v(H
(0) + εH(1) + . . .εmH(m)) (29)

v(0) = v0 , v(t) = v(t;ε,m)

The solution v(t) = v(t;ε,m) clearly depends upon both ε and the degree m of the
Taylor series approximation, and there is the natural expectation that, at least for
finite time intervals, the solutions v(t;ε,m) of (29) approximate the solutions of the
full problem (1), with a better approximation given with larger m. Indeed, for C2

Hamiltonians this is the case.

Proposition 2. Suppose that the Hamiltonian H ∈C2,m+1(M×E ). Then, at least for
bounded time intervals |t| ≤ T0, approximate orbits v(t;ε,m) of (29) are εm close
to orbits of the full Hamiltonian system (1).

Our intentions are to discuss Hamiltonian systems in infinite dimensional Hilbert
spaces, and in particular Hamiltonian partial differential equations, which we have
already pointed out are rarely given by smooth Hamiltonian vector fields. Therefore
the above proposition is not applicable. Nonetheless it serves as a basic guiding
principle to the problems we are aiming to discuss. It is also true that one can often
do better than Proposition 2, and in some cases the length of the time interval of
validity of this approximation may be longer, or indeed very much longer. However
the only improvement on this statement that can be made at this level of generality
is that, if the Lyapunov exponents of both (1)(29) are bounded, then for any m′ < m,
approximating orbits remain εm′

close to true orbits for times |t| ≤ Tε , with Tε ∼
log(1/ε).

6 The calculus of transformations

Given a Hamiltonian system
v̇ = Jgrad vH (30)

posed on a phase space M, we will subject it to transformations of variables of M.
Consider two phase spaces M1 and M2 with a symplectic form on M1 given in terms
of J1. Let H1 : M1 → R be a Hamiltonian. A transformation

τ : M1 → M2 , v 7→ w = τ(v) (31)

gives rise to a Hamiltonian defined on M2, namely H2(w) = H2(τ(v)) = H1(v). The
Hamiltonian vector field XH1 = J1grad vH1 is transformed as follows;
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ẇ = ∂vτ(v)v̇ = ∂vτ(v)J1grad vH1(v) ,

while on the other hand

grad vH1(v) = (∂vτ)T grad wH2(τ(v)) .

Equating the expressions, one observes the following:

Proposition 3. The vector field XH1 = J1grad vH1 is transformed to

ẇ = ∂vτ(v)J1(∂vτ)T grad wH2(τ(v)) . (32)

We denote J = ∂vτ(v)J1(∂vτ)T which can be used to define a symplectic structure
on M2. When M2 already has a symplectic structuree represented by J2, and the
transformation w = τ(v) is such that J2 = ∂vτ(v)J1(∂vτ)T , then τ is called canonical.
In partcular when M1 = M2 and J1 = J2 is given in Darboux coordinates, these
are the usual canonical transformations which play a special rôle in the subject of
Hamiltonian mechanics.

Examples of transformations. While the subject of canonical transformations and
their generating functions is basic knowledge in finite dimensional Hamiltonian sys-
tems, it is less developed in the study of PDE and other infinite dimensional cases.
In the following paragraphs we will work through some of the more elementary
transformations that occur in Hamiltonian PDE, putting them into context. Further-
more we will make use of particular parameter families of such transformations in
order to introduce a small parameter into the Hamiltonian. In this way the principle
outlined in section 5 can be invoked, with the result that we have a natural approx-
imation procedure for solutions through a (albeit formal) series expansion of the
Hamiltonian. This procedure and its general context has been worked out in a num-
ber of papers that have appeared over the span of several years, by the author along
with M. Groves [3], P. Guyenne & H. Kalisch [4] and P. Guyenne, D. Nicholls &
C. Sulem [5].

Initially, the setting is that M = L2(Rd−1)2 will be considered the phase space,
with

v =
(

η

ξ

)
∈ M , 〈v1|v2〉=

∫
Rd−1 η1η1 +ξ1ξ2 dx (33)

J =
(

0 I
−I 0

)
(34)

which is the case of Darboux coordinates.

(i) Amplitude scaling.

Consider the elementary transformations τ : v 7→ w, where
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w =
(

η ′

ξ ′

)
=

(
αη

βξ

)
= τ(v) , (35)

for α,β ∈ R+. The Jacobian of the transformation τ is given by

∂vτ =
(

αI 0
0 β I

)
therefore the symplectic form induced by the transformation is

J1 = ∂vτJ∂vτ
T = αβJ , (36)

with the Darboux operator J given in (34). The effects of such transformations
are easily restored to the usual Darboux coordinates through a time change t ′ =
α−1β−1t.

The small amplitude regime of the water wave problem is introduced by an am-
plitude scaling which is a transformation of this form. Namely one sets(

ε2η ′

εξ ′

)
=

(
η

ξ

)
, ε << 1 , (37)

which is to say that we are seeking solutions for which the amplitude η of a solution
is small, and represented in its asymptotic regime by an order one quantity η ′ times
ε2, and similarly for ξ = εξ ′. The resulting change of symplectic form is that

J1 = ε
−3J ,

which is equivalent to a rescaling to a slow time variable. The effect on the water
waves Hamiltonian (20) and its Taylor series expansion (28) is that

H1 =
∫
Rd−1

1
2 ε

2
ξ
′G(0)

ξ
′+ g

2 ε
4
η
′2 dx+ ∑

j≥3

1
2

∫
Rd−1 ε

2+2 j
ξ
′G( j−2)(η ′)ξ ′ dx .

In particular a small parameter has been introduced into the Hamiltonian H1 =
H1(η ′,ξ ′;ε), for which one may consider approximations by its Taylor series. For
instance, up to order O(ε4)

ε
2H(2)

1 + ε
4H(4)

1 = ε
2
(∫

1
2 ξ

′G(0)
ξ
′ dx

)
+ ε

4
(∫

g
2 η

′2 + 1
2 ξ

′G(1)(η ′)ξ ′ dx
)

,

where we recall that G(1)(η ′) = Dxη ′Dx−G(0)η ′G(0).

(ii) Spatial scaling.

The long wave regime of the water waves problem highlights solutions whose typ-
ical wavelength is asymptotically long; it is represented through a small parameter
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introduced into the problem by the spational scaling

x 7→ X := εx . (38)

The resulting transformation of phase space M is thus

τ : v(x) 7→ w(X) = v(X/ε) = τ(v)(X) . (39)

The Jacobian of the transformation on a vector field V (x) ∈ Tv(M) is

∂vτ(v)V (X) =
d
ds
|s=0

(
v(X/ε)+ sV (X/ε)

)
= V (X/ε) .

The transpose is slightly less obvious, we compute it using the identity;

〈V1|∂vτV2〉 =
∫
Rd−1 V1(X)V2(X/ε),dX (40)

=
∫
Rd−1 V1(εx)V2(x)ε

d−1dx = 〈(∂vτ)TV1|V2〉 . (41)

Therefore (∂vτ)TV (x) = εd−1V (εx), and the induced symplectic form is

J2 = ∂vτJ(∂vτ)T = εJ , (42)

at least if we are working with the Darboux symplectic structure. Thus, modulo a
rescaling of time, this recovers the original symplectic form.

It is necessary to study the effect that this transformation has on the Hamiltonian.

Lemma 2. Let τ(v)(X) = v(X/ε) = w(X) be be the transformation in question, and
let m(Dx) be a Fourier multiplier oprerator

(m(Dx)v)(x) =
1

(2π)d−1

∫ ∫
R2(d−1) eik·(x−x′)m(k)v(x′)dx′dk . (43)

Under τ , the operator is transformed to

τ(m(Dx)v)(X) = (m(εDX )τ(v))(X) . (44)

Proof. This is the fact that that cotangent variables (x,k) of pseudo-differential op-
erators are transformed symplectically under changes of variables. Indeed one cal-
culates
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τ(m(Dx)v)(X) =
1

(2π)d−1

∫ ∫
R2(d−1) eik·(X/ε−x′)m(k)v(x′)dx′dk

=
1

(2π)d−1

∫ ∫
R2(d−1) eik·(X/ε−X ′/ε)m(k)v(X ′/ε)

dX ′dk
εd−1

=
1

(2π)d−1

∫ ∫
R2(d−1) eiK·(X−X ′)m(εK)v(X ′/ε)dX ′dK

= m(εDX )τ(v)(X) .

ut

Considering the water wave Hamiltonian, the Dirichlet – Neumann operator

G(0)(Dx) = |Dx| tanh(h|Dx|)

is transformed to

G(0)(εDX ) = ε|Dx| tanh(εh|Dx|)∼ ε
2h|DX |2−

ε4h3

3
|DX |4 + . . . (45)

Using this expression, the Hamiltonian (20) becomes

H2 = ε
4
∫
Rd−1

(
1
2 ξ (h|DX |2ξ + g

2 η
2
)

+
ε2

2

(
ξ (−h3

3
|DX |4ξ )+ξ DX ·ηDX ξ

) dX
εd−1

+ε
7R(2)

2 . (46)

(iii) Surface elevation - velocity coordinates.

It is often convenient to write the Euler equations in terms of the variables w =
(η ,u), u = ∂xξ instead of v = (η ,ξ ). That is, the second variable represents a veloc-
ity instead of a potential; in this case it essentially represents the horizontal velocity
of the fluid at the free surface Γ (η). We restrict our discussion of these surface el-
evation - velocity coordinates to the case of two dimensions, for simplicity. That
is,

w = (η ,u) = τ(v) = (η ,∂xξ ) . (47)

The Jacobian of the transformation is

∂vτ(v) =
(

I 0
0 ∂x

)
and the induced symplectic form is represented by the operator

J2 =
(

0 −∂x
−∂x 0

)
= ∂vτJ(∂vτ)T , (48)
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where J is in Darboux coordinates. One recognizes this as the operator representing
the Boussinesq symplectic form (15), up to a trivial change of sign.

Returning to the Hamiltonian (46), and phrasing it in surface elevation - velocity
coordinates, we have

H2 = ε
3
∫
R

(
h
2 u2 + g

2 η
2
)

+ ε2

2

(
−h3

3 (∂X u)2 +ηu2
)

dX +O(ε7) , (49)

while using the operator J2 of (48) when expressing Hamilton’s equations (1).
The truncated system (49) up to order O(ε5) is precisely the Boussinesq sys-
tem (13) (modulo adjusting the value of several constants and the sign change
(p,q)T = (η ,−u)T ).

(iv) Moving reference frame.

It is part of the theory of nonlinear waves towork in coordinate systems which move
with the characteristic speed of solutions, namely

v′(x, t) := v(x− tc, t) , (50)

for appropriate choices for the velocity c. However this transformation does not at
first glance fit into the setting of the transformation theory described above, as the
time variable is distinguished, and (50) mixes the rôles of the spatial and temporal
variables. We observe however that in the problems under discussion the momentum

I(η ,ξ ) :=
∫
R

η(x)∂xξ (x)dx (51)

is a conserved quantity, as can be seen from its Poisson bracket with the Hamiltonian

{I,H} := 〈grad vI|J grad vH〉= 0 . (52)

Therefore their respective flows commute; ϕH
t ◦ϕ I

s (v) = ϕ I
s ◦ϕH

t (v). The Hamilto-
nian flow of the momentum

∂s

(
0 I
−I 0

)
grad vI =

(
−∂xη

−∂xξ

)
(53)

is simply constant unit speed translation

ϕ
I
s (v)(x) = v(x− s) .

Thus the flow along the diagonal is clearly ϕH
t ◦ ϕ I

tc(v) = ϕ
H+cI
t . Therefore the

Hamiltonian flow of H(v) + cI(v) is the Hamiltonian flow of H(v) observed in a
coordinate frame translating with velocity c.
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In the context of the water wave problem the characteristic velocity is c0 :=
√

gh;
to study the problem of water waves in our present point of view, we are to look at
the flow of the system whose Hamiltonian is H2 +

√
ghI.

Writing the momentum in surface elevation - velocity coordinates and scaling
the coordinates appropriately, we find that

I = ε
3
∫
R

uη dX , (54)

and therefore

H2 +
√

ghI = ε
3
∫
R

1
2

(
hu2 +2

√
ghuη +gη

2
)

+ ε2

2

(
−h3

3 (∂X u)2 +ηu2
)

dX

= ε
3
∫
R

1
2 (
√

hu+
√

gη)2 + ε2

2

(
−h3

3 (∂X u)2 +ηu2
)

dX . (55)

(v) Characteristic coordinates.

Focusing on the first term H2 of the Hamiltonian, it is a common situation to have it
in the quadratic form

H(2)
2 = 1

2

∫
R

Au2 +Bη
2 dX ,

with A,B > 0. Hamilton’s equations (1) for H(2)
2 alone are the wave equation

∂t

(
η

u

)
=

(
0 −∂X

−∂X 0

)
grad vH(2)

2 =
(

0 −A
−B 0

)(
∂X η

∂X u

)
. (56)

We seek a transformation of coordinates (r,s)T = τ(η ,u)T which will accomplish
three things.
(1) It should diagonalize the symplectic form J2;

J3 := ∂vτ

(
0 −∂X

−∂X 0

)
(∂vτ)T =

(
∂X 0
0 −∂X

)
. (57)

(2) It should transform the Hamiltonian to normal form

H(2)
3 = 1

2

∫
R

√
AB(r2 + s2)dX . (58)

(3) And it should transform the wave equation (56) to characteristic form

∂t

(
r
s

)
=

(
C 0
0 −C

)(
∂X r
∂X s

)
. (59)

The transformation w = τ(v) = T v, where T is the matrix
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T =

 4
√

B
4A − 4

√
A

4B

4
√

B
4A

4
√

A
4B


accomplishes all three of these goals, with the result that C =

√
AB.

In the case of the water wave Hamiltonian H3, we have A = h and B = g, so that

(
r
s

)
=

 4
√

g
4h − 4

√
h

4g

4
√

g
4h

4
√

h
4g

(
η

u

)
, (60)

and in these terms, the relevant Hamiltonian approximation which is to be valid up
to O(ε5) is given by

H2 +
√

ghI = ε
3
∫
R

√
ghs2 dX (61)

+ε
5
∫
R
− h3

6

(√
g

4h

)
(∂X r−∂xs)2 + 1

4
√

2
4
√

g
h (r3− r2s− rs2 + s3)dX .

Now restrict this Hamiltonian to the hypersurface M1 := {s = 0} ⊆ M, denoting it
by H4;

H4 = ε
5
∫
R
− h3

6

(√
g

4h

)
(∂X r)2 + 1

4
√

2
4
√

g
h r3 dX . (62)

The subspace M1 is a symplectic subspace of M, possessing the symplectic form
J4 = ∂X , it being the restriction of the symplectic form J3 of (57). This is unlike
the situation in Darboux coordinates, in which M1 would be a Lagrangian subspace.
The equations of motion (1) for r on M1, or at least in an o(ε2) neighborhood of it,
are thus

∂tr = ∂X grad rH4

= ε
2
∂X (−c1∂

2
X r + c2r2) , (63)

with c1 = h3

3

√
g

4h and c2 = 3
4
√

2
4
√

g
h . This is precisely the KdV equation given in

(10), modulo a simple change of time scale ∂t = ε2∂τ (τ = ε2t), and with a few extra
but unimportant constants that could have been normalized in the above calculation
with some forethought.

We have seen that a formal calculation, using basic transformations and a small
parameter have given us the KdV equation as an approximation of the equations of
water waves. It has been a research program to understand the rigorous aspects of
this correspondence between solutions of the full Euler’s equations and solutions of
the KdV or of other model long wave equations. However at this point none of the
rigorous results follow along the lines of the above concatenation of transformations.
We believe that such an approach would be a rewarding line of work.
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