Introduction: why model theory?

- Here is a concrete example: Suppose V is an algebraic variety and f is an injective morphism from V to V. Claim: f is surjective.
- On the face of it, this doesn't look like logic - it looks like algebraic geometry. Let's give a proof.
- After unravelling the definitions, we can assume that V is the zero set of some finite collection of polynomials over C. Moreover, f is given by complex rational maps. This is to say everything can be expressed in the language of fields.
- Suppose we ask the same question over a finite field instead of the complex numbers. Are injective maps surjective? Yes, by the pigeonhole principle!

Introduction cont'd

- But this property "injective implies surjective" also holds for unions of finite fields in this context. So the property in question holds for algebraically closed fields of finite characteristic.
- The limit of algebraically closed fields of arbitrarily large finite characteristic is an algebraically closed field of characteristic 0 - this is a use of either compactness or ultraproducts - so the same property holds for some algebraically closed field of characteristic 0 .
- Finally, the complex numbers are an algebraically closed field of characteristic 0 and all such fields satisfy the same properties expressible in the language of fields. So all injective morphisms from a variety to itself are surjective.

Introduction cont'd

- What did we use here that was model theory?
- We identified a property that was expressible in a well-chosen language. Said another way, we found a language suitable for the interesting property.
- We were able to determine the properties that held in the relevant models in this language - we knew what the theory of algebraically closed fields looked like.
- We were able to conclude facts about one model (the complex numbers) by looking at other models. The techniques involved here - unions of chains, some combinatorial reasoning, compactness - are not difficult but need to be used in the right context.

Filters and Ultrafilters

Definition

If X is a set and $F \subseteq \mathcal{P}(X)$ then F is said to be a filter if

- $\emptyset \notin F$,
- if $A, B \in F$ then $A \cap B \in F$, and
- if $A \in F$ and $A \subseteq B \subseteq X$ then $B \in F$.

Lemma

$G \subseteq \mathcal{P}(X)$ is contained in a filter iff G has the finite intersection property i.e. for every finite $G_{0} \subseteq G, \bigcap G_{0} \neq \emptyset$.

Definition

An ultrafilter on X is a filter F such that for every $A \subseteq X$, either $A \in F$ or $X \backslash A \in F$.

Filters and Ultrafilters, cont'd

Lemma

- If F is a filter on X then F is an ultrafilter iff it is a maximal filter.
- Any filter on X can be extended to an ultrafilter.

Examples: Suppose that X is a set.

- If $a \in X$ then $U=\{A \in \mathcal{P}(X): a \in A\}$ is an ultrafilter; ultrafilters of this kind are called principal.
- If X is infinite, the set of cofinite subsets of X is a filter called the Frechet filter on X; it is contained in all non-principal ultrafilters on X.
- Let $Y=\mathcal{P}_{\text {fin }}(X)$ be the set of finite subsets of X. For any finite subset A of X, let $O_{A}=\{B \in Y: A \subseteq B\}$. The set $F=\left\{O_{A}: A \in Y\right\}$ has the finite intersection property and is not contained in a principal ultrafilter.

Ultralimits

Now suppose U is an ultrafilter on a set I and $\bar{r}=\left\langle r_{i}: i \in I\right\rangle$ is an I-indexed family of real numbers. We define the ultralimit of \bar{r} with respect to U as follows:

$$
\lim _{i \rightarrow U} r_{i}=r \text { iff for every } \epsilon>0,\left\{i \in I:\left|r-r_{i}\right|<\epsilon\right\} \in U
$$

Lemma

If \bar{r} is bounded then

- $\lim _{i \rightarrow U} r_{i}$ exists and is unique;
- $\lim _{i \rightarrow U} r_{i}=\inf \left\{B:\left\{i \in I: r_{i} \leq B\right\} \in U\right\}$;
- $\lim _{i \rightarrow U} r_{i}=\sup \left\{B:\left\{i \in I: r_{i} \geq B\right\} \in U\right\}$

Ultraproducts of metric spaces

Fix an index set I, an ultrafilter U and metric spaces $\left(X_{i}, d_{i}\right)$ for $i \in I$ with a uniform bound on the metrics i.e. there is some B so that for all i and all $x, y \in X_{i}, d_{i}(x, y) \leq B$. Define d on $\prod X_{i}$ as follows:

$$
d(\bar{x}, \bar{y})=\lim _{i \rightarrow U} d_{i}\left(x_{i}, y_{i}\right)
$$

Lemma

d is a pseudo-metric on $\prod_{i \in I} X_{i}$.

Ultraproducts of metric spaces, cont'd

Definition

The ultraproduct of the X_{i} 's with respect to $U, \prod_{i \in I} X_{i} / U$ is the metric space obtained by quotienting $\prod_{i \in I} X_{i}$ by d. If all the X_{i} 's are equal to a fixed X we will often write X^{U} for this ultraproduct and call it the ultrapower.

Exercises

- Show that for any I and ultrafilter U on $I,[0,1]^{U} \cong[0,1]$. More generally, show that for a compact metric space X, $X^{U} \cong X$.
- Show that if each X_{i} is complete then $\prod_{i \in I} X_{i} / U$ is complete.
- Show for any metric spaces X_{n} for $n \in N, \prod_{n \in N} X_{n} / U$ is complete.
- Show that this definition of ultraproduct is the same as the discrete or set-theoretic ultraproduct i.e. suppose that X_{i} has the discrete metric and compute the ultraproduct.

Metric structures

- We want to add more structure to a (bounded) metric space; for now let's consider a single additional function f.
- So we will have a bounded metric space (X,d) and a function f say of one variable. We do want that the ultraproduct of these structures is still a structure of the same kind. So how do we define f on the ultrapower of X ?
- f must be continuous!
- f must be uniformly continuous!
- There is nothing special about one variable; these arguments apply to functions of many variables.

Metric structures cont'd

- What about relations? Imagine that we have a one-variable relation R (taking values somewhere) on a metric space and we want to make sense of it in the ultrapower.
- Its range must be compact and R must be uniformly continuous.
- There is really no loss in assume that the range of R is $[0,1]$ or some other compact interval in the reals.
- Again there is nothing special about one-variable; we can have relations of many variables.

The language of a metric structure

A language L will consist of

- a set S called sorts;
- \mathcal{F}, a family of function symbols. For each $f \in \mathcal{F}$ we specify the domain and range of $f: \operatorname{dom}(f)=\prod_{i=1}^{n} s_{i}$ where $s_{1}, \ldots, s_{n} \in S$ and $r n g(f)=s$ where $s \in S$. Moreover, we also specify a continuity modulus. That is, for each i we are given $\delta_{i}^{f}:[0,1] \rightarrow[0,1]$; and
- \mathcal{R}, a family of relation symbols. For each $R \in \mathcal{R}$ we are given the domain $\operatorname{dom}(R)=\prod_{i=1}^{n} s_{i}$ where $s_{1}, \ldots, s_{n} \in S$ and the $\operatorname{rng}(R)=K_{R}$ for some closed interval K_{R}. Moreover, for each i, we specify a continuity modulus $\delta_{i}^{R}:[0,1] \rightarrow[0,1]$.
- For each $s \in S$, we have one special relation symbol d_{s} with domain $s \times s$ and range of the form $\left[0, B_{s}\right]$. It's continuity moduli are the identity functions.

Definition of a metric structures

A metric structure M interprets a language L; it will consist of

- an S-indexed family of complete bounded metric spaces $\left(X_{s}, d_{s}\right)$ for $s \in S$;
- a family of functions f^{M} for every $f \in \mathcal{F}$ such that $\operatorname{dom}\left(f^{M}\right)=\prod_{i=1}^{n} X_{s_{i}}$ for the sequence of sorts corresponding to the domain of f and $r n g\left(f^{M}\right)=X_{s}$ for the sort corresponding to the range of $f . f^{M}$ is uniformly continuous as specified by the uniform continuity moduli associated to f; and
- a family of relations R^{M} for every $R \in \mathcal{R}$ such that $\operatorname{dom}\left(R^{M}\right)=\prod_{i=1}^{n} X_{s_{i}}$ for the sequence of sorts corresponding to the domain of R and $r n g\left(R^{M}\right)=K_{R}$ for the closed interval associate to $R . R^{M}$ is uniformly continuous as specified by the uniform continuity moduli associated to R.

Examples of metric structures

Some simple examples:

- Any complete bounded metric space (X, d). This has the empty family of functions and relations although we often count the metric as a relation (why is it uniformly continuous?)
- Any ordinary first order structure M with some collection of functions and relations. To see this as a metric structure, we put the discrete metric on M to make it a bounded metric space. All functions become uniformly continuous. Relations which are usually thought of as subsets of M^{n} become $\{0,1\}$-valued functions - again they are uniformly continuous.

Hilbert space

- A Hilbert space H is a complete complex inner product space; how can we see this as a metric structure?
- Let B_{n} be the ball of radius n centered at the origin in H; B_{n} is a bounded complete metric space with respect to the metric induced from the inner product.
- There are inclusion maps between B_{n} and B_{m} if $n \leq m$.
- 0 is a constant (our functions can have arity 0 !) in B_{1}.
- For complex numbers λ and for every n , there is a unary function λ_{n} which is scalar multiplication by λ on B_{n}; this function has range in B_{m} where m is the least integer greater than or equal to $n|\lambda|$.
- The operation of addition has to be similarly divided up: for $m, n \in N$, there is an operation $+_{m, n}$ which takes $B_{m} \times B_{n}$ to B_{m+n}.

Hilbert space, cont'd

- The inner product is complex valued which is an additional issue. Besides dividing it up so that there is a relation defined on each product $B_{m} \times B_{n}$, we also have to separate this relation into its real and complex parts.
- So formally a Hilbert space can be thought of as a metric structure by considering
- The family of bounded metric structures B_{n} for all $n \in N$;
- the family of functions $0, \lambda_{n}$ for $\lambda \in C$ and $n \in N$ and $+_{m, n}$ for all $m, n \in N$; and
- the family of relations $r e(\langle-,-\rangle)_{m, n}$ and $\operatorname{im}(\langle-,-\rangle)_{m, n}$ for $m, n \in N$.

A calculation

- Suppose that $\left(X_{i}, d_{i}\right)$ are uniformly bounded metric spaces for all $i \in I, U$ is an ultrafilter on I and f_{i} is an n-ary uniformly continuous relation with a fixed uniform continuity modulus for all $i \in I$ and range in K, a compact interval.
- Claim: Suppose that (Y, d, f) is the ultraproduct
$\prod\left(X_{i}, d_{i}, f_{i}\right) / U$ and $\bar{a}_{2}, \ldots, \bar{a}_{n} \in Y$ then $i \in I$

$$
\sup _{x \in Y} f\left(x, \bar{a}_{2}, \ldots, \bar{a}_{n}\right)=\lim _{i \rightarrow U} \sup _{x \in X_{i}} f_{i}\left(x, a_{2}^{i}, \ldots, a_{n}^{i}\right)
$$

