Introduction: why model theory?

- Here is a concrete example: Suppose *V* is an algebraic variety and *f* is an injective morphism from *V* to *V*. Claim: *f* is surjective.
- On the face of it, this doesn't look like logic it looks like algebraic geometry. Let's give a proof.
- After unravelling the definitions, we can assume that V is the zero set of some finite collection of polynomials over C.
 Moreover, f is given by complex rational maps. This is to say everything can be expressed in the language of fields.
- Suppose we ask the same question over a finite field instead of the complex numbers. Are injective maps surjective? Yes, by the pigeonhole principle!

Introduction cont'd

- But this property "injective implies surjective" also holds for unions of finite fields in this context. So the property in question holds for algebraically closed fields of finite characteristic.
- The limit of algebraically closed fields of arbitrarily large finite characteristic is an algebraically closed field of characteristic 0 this is a use of either compactness or ultraproducts so the same property holds for some algebraically closed field of characteristic 0.
- Finally, the complex numbers are an algebraically closed field of characteristic 0 and all such fields satisfy the same properties expressible in the language of fields. So all injective morphisms from a variety to itself are surjective.

Introduction cont'd

- What did we use here that was model theory?
- We identified a property that was expressible in a well-chosen language. Said another way, we found a language suitable for the interesting property.
- We were able to determine the properties that held in the relevant models in this language we knew what the theory of algebraically closed fields looked like.
- We were able to conclude facts about one model (the complex numbers) by looking at other models. The techniques involved here - unions of chains, some combinatorial reasoning, compactness - are not difficult but need to be used in the right context.

Filters and Ultrafilters

Definition

If X is a set and $F \subseteq \mathcal{P}(X)$ then F is said to be a filter if

- Ø ∉ F,
- if $A, B \in F$ then $A \cap B \in F$, and
- if $A \in F$ and $A \subseteq B \subseteq X$ then $B \in F$.

Lemma

 $G \subseteq \mathcal{P}(X)$ is contained in a filter iff G has the finite intersection property i.e. for every finite $G_0 \subseteq G$, $\bigcap G_0 \neq \emptyset$.

Definition

An ultrafilter on X is a filter F such that for every $A \subseteq X$, either $A \in F$ or $X \setminus A \in F$.

Filters and Ultrafilters, cont'd

Lemma

- If F is a filter on X then F is an ultrafilter iff it is a maximal filter.
- Any filter on X can be extended to an ultrafilter.

Examples: Suppose that *X* is a set.

- If $a \in X$ then $U = \{A \in \mathcal{P}(X) : a \in A\}$ is an ultrafilter; ultrafilters of this kind are called principal.
- If X is infinite, the set of cofinite subsets of X is a filter called the Frechet filter on X; it is contained in all non-principal ultrafilters on X.
- Let $Y = \mathcal{P}_{fin}(X)$ be the set of finite subsets of X. For any finite subset A of X, let $O_A = \{B \in Y : A \subseteq B\}$. The set $F = \{O_A : A \in Y\}$ has the finite intersection property and is not contained in a principal ultrafilter.

Now suppose *U* is an ultrafilter on a set *I* and $\bar{r} = \langle r_i : i \in I \rangle$ is an *I*-indexed family of real numbers. We define the ultralimit of \bar{r} with respect to *U* as follows:

 $\lim_{i \to U} r_i = r \text{ iff for every } \epsilon > 0, \{i \in I : |r - r_i| < \epsilon\} \in U$

Lemma

If \bar{r} is bounded then

- $\lim_{i \to U} r_i$ exists and is unique;
- $\lim_{i \to U} r_i = \inf\{B : \{i \in I : r_i \leq B\} \in U\};$

•
$$\lim_{i \to U} r_i = \sup\{B : \{i \in I : r_i \ge B\} \in U\}$$

Fix an index set *I*, an ultrafilter *U* and metric spaces (X_i, d_i) for $i \in I$ with a uniform bound on the metrics i.e. there is some *B* so that for all *i* and all $x, y \in X_i$, $d_i(x, y) \leq B$. Define *d* on $\prod_{i \in I} X_i$

as follows:

$$d(\bar{x},\bar{y}) = \lim_{i\to U} d_i(x_i,y_i)$$

Lemma

d is a pseudo-metric on $\prod_{i \in I} X_i$.

Definition

The ultraproduct of the X_i 's with respect to U, $\prod_{i \in I} X_i/U$ is the metric space obtained by quotienting $\prod_{i \in I} X_i$ by d. If all the X_i 's are equal to a fixed X we will often write X^U for this ultraproduct and call it the ultrapower.

- Show that for any *I* and ultrafilter *U* on *I*, $[0, 1]^U \cong [0, 1]$. More generally, show that for a compact metric space *X*, $X^U \cong X$.
- Show that if each X_i is complete then $\prod_{i \in I} X_i / U$ is complete.
- Show for any metric spaces X_n for n ∈ N, ∏_{n∈N} X_n/U is complete.
- Show that this definition of ultraproduct is the same as the discrete or set-theoretic ultraproduct i.e. suppose that X_i has the discrete metric and compute the ultraproduct.

- We want to add more structure to a (bounded) metric space; for now let's consider a single additional function *f*.
- So we will have a bounded metric space (X,d) and a function *f* say of one variable. We do want that the ultraproduct of these structures is still a structure of the same kind. So how do we define *f* on the ultrapower of X?
- f must be continuous!
- f must be uniformly continuous!
- There is nothing special about one variable; these arguments apply to functions of many variables.

- What about relations? Imagine that we have a one-variable relation *R* (taking values somewhere) on a metric space and we want to make sense of it in the ultrapower.
- Its range must be compact and *R* must be uniformly continuous.
- There is really no loss in assume that the range of *R* is [0, 1] or some other compact interval in the reals.
- Again there is nothing special about one-variable; we can have relations of many variables.

The language of a metric structure

A language L will consist of

- a set S called sorts;
- *F*, a family of function symbols. For each *f* ∈ *F* we specify the domain and range of *f*: *dom*(*f*) = ∏ⁿ_{i=1} *s_i* where *s*₁,..., *s_n* ∈ *S* and *rng*(*f*) = *s* where *s* ∈ *S*. Moreover, we also specify a continuity modulus. That is, for each *i* we are given δ^f_i : [0, 1] → [0, 1]; and
- *R*, a family of relation symbols. For each *R* ∈ *R* we are given the domain *dom*(*R*) = ∏ⁿ_{i=1} s_i where s₁,..., s_n ∈ *S* and the *rng*(*R*) = K_R for some closed interval K_R. Moreover, for each *i*, we specify a continuity modulus δ^R_i : [0, 1] → [0, 1].
- For each s ∈ S, we have one special relation symbol ds with domain s × s and range of the form [0, Bs]. It's continuity moduli are the identity functions.

Definition of a metric structures

A metric structure *M* interprets a language *L*; it will consist of

- an S-indexed family of complete bounded metric spaces (X_s, d_s) for s ∈ S;
- a family of functions *f^M* for every *f* ∈ *F* such that *dom*(*f^M*) = ∏ⁿ_{i=1} X_{si} for the sequence of sorts corresponding to the domain of *f* and *rng*(*f^M*) = X_s for the sort corresponding to the range of *f*. *f^M* is uniformly continuous as specified by the uniform continuity moduli associated to *f*; and
- a family of relations R^M for every $R \in \mathcal{R}$ such that $dom(R^M) = \prod_{i=1}^n X_{s_i}$ for the sequence of sorts corresponding to the domain of R and $rng(R^M) = K_R$ for the closed interval associate to R. R^M is uniformly continuous as specified by the uniform continuity moduli associated to R.

Some simple examples:

- Any complete bounded metric space (*X*, *d*). This has the empty family of functions and relations although we often count the metric as a relation (why is it uniformly continuous?)
- Any ordinary first order structure *M* with some collection of functions and relations. To see this as a metric structure, we put the discrete metric on *M* to make it a bounded metric space. All functions become uniformly continuous. Relations which are usually thought of as subsets of *Mⁿ* become {0, 1}-valued functions - again they are uniformly continuous.

- A Hilbert space *H* is a complete complex inner product space; how can we see this as a metric structure?
- Let *B_n* be the ball of radius *n* centered at the origin in *H*; *B_n* is a bounded complete metric space with respect to the metric induced from the inner product.
- There are inclusion maps between B_n and B_m if $n \le m$.
- 0 is a constant (our functions can have arity 0!) in B_1 .
- For complex numbers λ and for every n, there is a unary function λ_n which is scalar multiplication by λ on B_n ; this function has range in B_m where *m* is the least integer greater than or equal to $n|\lambda|$.
- The operation of addition has to be similarly divided up: for *m*, *n* ∈ *N*, there is an operation +_{*m*,*n*} which takes *B_m* × *B_n* to *B_{m+n}*.

- The inner product is complex valued which is an additional issue. Besides dividing it up so that there is a relation defined on each product B_m × B_n, we also have to separate this relation into its real and complex parts.
- So formally a Hilbert space can be thought of as a metric structure by considering
 - The family of bounded metric structures B_n for all $n \in N$;
 - the family of functions 0, λ_n for $\lambda \in C$ and $n \in N$ and $+_{m,n}$ for all $m, n \in N$; and
 - the family of relations $re(\langle -, \rangle)_{m,n}$ and $im(\langle -, \rangle)_{m,n}$ for $m, n \in N$.

A calculation

- Suppose that (X_i, d_i) are uniformly bounded metric spaces for all i ∈ I, U is an ultrafilter on I and f_i is an n-ary uniformly continuous relation with a fixed uniform continuity modulus for all i ∈ I and range in K, a compact interval.
- Claim: Suppose that (Y, d, f) is the ultraproduct $\prod_{i \in I} (X_i, d_i, f_i) / U$ and $\bar{a}_2, \dots, \bar{a}_n \in Y$ then

$$\sup_{x\in Y} f(x, \bar{a}_2, \ldots, \bar{a}_n) = \lim_{i\to U} \sup_{x\in X_i} f_i(x, a_2^i, \ldots, a_n^i)$$