Fix a language *L* and fix a tuple of variables \bar{x} from a sequence of sorts \bar{s} . We define a pseudo-metric on the formulas with free variables \bar{x} as follows: we define the distance between $\varphi(\bar{x})$ and $\psi(\bar{x})$ to be

 $\sup\{|\varphi^{M}(\bar{a}) - \psi^{M}(\bar{a})| : M, \text{ an } L\text{-structure, and } \bar{a} \in M\}$

We will call this space $\mathcal{F}_{\bar{s}}$. Exercise: Check that this is a pseudo-metric on the set of formulas in the free variables \bar{x} .

Definition

We say that the density character of a topological space X is the infinum of the cardinality of a dense subset of X. We will write $\chi(X)$ for the density character of X.

Note: An infinite separable space has countable density character.

Proposition

If L is countable i.e. there are only countably many relation and function symbols, then for any tuple of sorts \bar{s} , $\mathcal{F}_{\bar{s}}$ is separable.

Notation:
$$\chi(L)$$
 will mean $\sum_{\bar{s}} \chi(\mathcal{F}_{\bar{s}})$.

In the Henkin construction, one could have worked with only a dense subset of formulas; convince yourself that the outcome could have been improved to say that if *L* was countable and Σ was a finitely satisfiable set then there is a separable model of Σ .

Definition

- Suppose that *M* and *N* are *L*-structures such that the universe of *M* is a complete subset of *N*. *M* is called a submodel if all functions and relations from *L* on *M* are the restriction of those from *N* i.e. for all functions $f \in L$, $f^M = f^N \cap M$ and for all relations $R \in L$, $R^M = R^N \cap M$. We write $M \subseteq N$.
- If M ⊆ N, it is called an elementary submodel if, for every L-formula φ(x̄) and every ā ∈ M, φ^M(ā) = φ^N(ā). We write M ≺ N.

- An embedding between metric structures is a map which preserves the functions and relations. An embedding is elementary if its image is an elementary submodel of the range.
- Notice that by Łoś Theorem, any metric structure M embeds elementarily into its ultrapower M^U for any ultrafilter U via the diagonal embedding.

Proposition (Vaught's test)

If $M \subseteq N$ then M is an elementary submodel if for every formula $\varphi(x, \bar{y}), r \in R$ and $\bar{a} \in M$, if $\inf_x \varphi(x, \bar{a}) < r$ holds in N then there is $b \in M$ such that $\varphi(b, \bar{a}) < r$ holds in M.

Theorem

Suppose that N is an L-structure and $A \subseteq N$. Then there is an elementary submodel $M \subseteq N$ such that

 $\bigcirc A \subseteq M \text{ and}$

If the every sort s,

$$\chi(X_s^M) \leq \chi(L) + \chi(A \cap X_s^N)$$

Types

Definition

- A condition is an expression of the form $\varphi(\bar{x}) \leq r$ or $\varphi(\bar{x}) \geq r$ for a formula φ and a real number r.
- 2 A type in the variables \bar{x} is a set of conditions involving formulas with free variables \bar{x} .
- Solution A type *p* in the variables x̄ is realized if there is a metric structure *M* and ā ∈ *M* such that ā satisfies every condition in *p* e.g. if φ(x̄) ≤ *r* is in *p* then φ^M(ā) ≤ *r* holds.
- If *ā* ∈ *M* is a tuple from sorts *š* and *x* is a tuple of matching variables then we define *tp*(*ā*), the type of *ā*, to be the type in variable *x* given by

$$\{\varphi(\bar{x}) \leq r : \varphi^{M}(\bar{a}) \leq r\} \cup \{\varphi(\bar{x}) \geq r : \varphi^{M}(\bar{a}) \geq r\}$$

A type of this kind is called a complete type.

Fact

• A type is realized iff it is finitely satisfiable.

2 A type is complete iff it is maximal and finitely satisfiable.

Fact

A complete type p in the variables \bar{x} determines a function from formulas in the free variables \bar{x} to the reals defined by

$$\varphi \mapsto p^{\varphi} := \varphi^{M}(\bar{a})$$

where M is a metric structure and $\bar{a} \in M$ realizes p. This is well-defined and does not depend on the choice of M or \bar{a} .

We fix a language *L* and a complete theory *T* in this language. Equivalently we fix a metric structure *M* for the language *L* and let T = Th(M). For a tuple of sorts \bar{s} from *L* and matching variables \bar{x} we define the set $S_{\bar{s}}(T)$ to be all complete types in the variables \bar{x} realized in models of *T*.

We put a topology on $S_{\bar{s}}(T)$ by letting the basic open sets be defined as follows: for every formula $\varphi(\bar{x})$ and real number *r*, let

$$O_{arphi,r} = \{ p \in S_{\overline{s}}(T) : p^{arphi} < r \}$$

This is called the logic topology on the type space.

Fact

The logic topology on $S_{\bar{s}}(T)$ is compact.

What is a formula?

Proposition

If $\varphi(\bar{x})$ is a formula then the function f_{φ} from $S_{\bar{s}}(T)$ to R given by $p \mapsto p^{\varphi}$ is continuous with the logic topology on the domain.

Proposition

The following are equivalent:

- *f* is a continuous function from $S_{\overline{s}}(T)$ to *R*.
- 2 *f* is the uniform limit of functions of the form f_{φ} i.e. for every *n* there is a formula φ_n such that $|f(p) p^{\varphi_n}| \le 1/n$.

Definition

A Cauchy sequence of formulas $\bar{\varphi}$ in $\mathcal{F}_{\bar{s}}$ will be called a definable predicate and interpreted in an *L*-structure *M* by

$$\bar{\varphi}^{M}(\bar{a}) = \lim_{n \to \infty} \varphi^{M}_{n}(\bar{a})$$

Definable predicates are essentially formulas

- Suppose that P(x̄) is a definable predicate. There is a unique way of extending a model of T to interpret P.
- That is to say, the map sending M whose theory is T to (M, P(M)) is functorial so if $M \prec N$ then $(M, P(M)) \prec (N, P(N))$.
- Expanding a metric structure by a definable predicate is a conservative extension.

A metric on the type space

- Define a metric on $S_{\bar{s}}(T)$ as follows: for $p, q \in S_{\bar{s}}(T)$, d(p,q) is defined to be the infinum of $d^M(\bar{a},\bar{b})$ where Mranges over all models of T, $\bar{a} \in M$ is a realization of p and $\bar{b} \in M$ is a realization of q. d is computed as the maximum of the values d_s as s ranges over the sorts in \bar{s} .
- Claim: *d* defines a metric on $S_{\bar{s}}(T)$.
- Notice that d(p, q) is always realized this follows by compactness.
- The only issue is the triangle inequality another use of compactness.

Proposition

The metric topology on $S_{\bar{s}}(T)$ refines the logic topology.

- When do the metric and logic topologies on S_s(T) coincide locally?
- Unravelling this a little bit, one sees that we are asking when the distance to a type is in some way defined by conditions at least approximately.

Zero sets and distance predicates

- A zero set is the set of realizations of a type i.e. if *p* is a type and *M* is an *L*-structure, we call the set of tuples ā ∈ M which satisfy all the conditions in *p* the zero set of *p*.
- This looks like strange terminology let me explain.
- If *M* is a metric space and *X* is a closed subset we call
 P(*x*) = *d*(*x*, *X*) = inf{*d*(*x*, *y*) : *y* ∈ *X*} a distance predicate for *X*.
- We call the zero set X in M of some type p a definable set if the distance predicate for X is a definable predicate.

Proposition (Mysterious answer)

p is a definable set iff the logic and metric topologies agree locally at *p*.

Proposition (MTFMS, 9.19)

The following are equivalent:

- p is definable.
- 2 There are formulas φ_m and numbers $\delta_m > 0$ such that for every m, $p^{\varphi_m} = 0$

if "
$$\varphi(\bar{x}) \leq \delta_m$$
" is in q then $d(p,q) \leq \frac{1}{m}$

Lemma (MTFMS, 2.10)

Suppose that $F, G : X \rightarrow [0, 1]$ are functions such that

$$\forall \epsilon > \mathbf{0} \ \exists \delta > \mathbf{0} \ \forall \mathbf{x} \in \mathbf{X} \ (\mathbf{F}(\mathbf{x}) \leq \delta \implies \mathbf{G}(\mathbf{x}) \leq \epsilon)$$

Then there exists an increasing, continuous function $\alpha : [0, 1] \rightarrow [0, 1]$ such that $\alpha(0) = 0$ and

 $\forall x \in X \ (G(x) \leq \alpha(F(x)))$