Theorem

- T is a complete continuous theory in L;
- T is contained in T', a complete continuous theory in L' containing L;
- the forgetful functor from Mod(T') to Mod(T) is an equivalence of categories, then
- every sort in L' is in definable bijection with a definable zero set in L.

This will tell us by stable embeddedness that every L' function and relation can also be expressed as a definable predicate in L.

A sketch of the proof

- Fix a saturated model *M* of *T*' and suppose *c* ∈ *S*(*M*), S a sort from *L*'. Consider φ(*x̄*, *c*) where *x̄* ranges over sorts from *L*.
- By stable embeddedness and compactness, for each *n*, there are ψ_i(x̄, ȳ_i) for i = 1,..., m_n such that

$$\min_{i} \inf_{\bar{y}_{i}} |\varphi(\bar{x}, c) - \psi_{i}(\bar{x}, \bar{y}_{i})| \leq \frac{1}{2^{n}}$$

• Let $\bar{\psi}_n$ be the single formula which codes the canonical parameters for $\psi_1 \dots \psi_{m_n}$ and $S_{\bar{\psi}_n}$ be the sort of those canoncial parameters.

$$ar{S}_{arphi} = \prod_n S_{ar{\psi}_n}$$

 The definable predicate φ(x̄, c) is captured by an element of S̄, a sort entirely in T^{eq}.

Not quite

- The identification of φ(x̄, c) with an element of S̄_φ may not be canonical; we fix this with "forced convergence".
- For a sequence of real numbers a_n for $n \in \mathbb{N}$ we define numbers b_n such that $b_{n+1} = a_{n+1}$ if $b_n - 2^{-n} \leq a_n \leq b_n + 2^{-n}$. If $a_n \geq b_n + 2^{-n}$ then let $b_{n+1} = b_n + 2^{-n}$ and if $a_n \leq b_n - 2^{-n}$ then let $b_{n+1} = b_n - 2^{-n}$.
- This produces a continuous function from sequences of real numbers to fast converging Cauchy sequences; we identify sequences which converge to this same forced limit.
- This gives a formula on S
 _φ, Ψ(x̄, c̄) which outputs the the same forced limit when we compute the limit of the sequence of ψ_n's.
- \bar{S}_{φ} will be the sort in which we quotient by the canonical parameters for Ψ .

A sketch of the proof, cont'd

Consider

$$\Sigma_n = \{ \sup_{\bar{x}} |\varphi(\bar{x}, c) - \varphi(\bar{x}, c')| \leq \frac{1}{k} : k \in \omega, \bar{x} \in L \} \cup \{ d_{\mathcal{S}}(c, c') \geq \frac{1}{n} \}$$

- Σ_n is inconsistent by assumption for every n so by compactness there are countably many formulas φ_i(x̄, y) such that if two elements of S agree on all these formulas then they are equal.
- So there is a definable injection from *S* into $\prod_i \bar{S}_{\varphi_i}$ and we can identify *S* with the definable zero set which is the range of this map.

4 ways to say stable: definition 1

Definition

We say that a complete theory *T* is λ -stable if whenever $M \models T$, $\chi(M) \leq \lambda$ then $\chi(S(M)) \leq \lambda$ where the type space has the metric topology.

T is stable if it is λ -stable for some λ .

- The theory of infinite-dimensional Hilbert space is stable; in fact it is ℵ₀-stable.
- If *M* is the infinite dimensional separable Hilbert space then *S*(*M*) or more precisely the space of 1-types in *x* over the unit ball of *M* is determined, by quantifier elimination, essentially by specifying the inner product of *x* with each element of an orthonormal basis for *M*.
- There are clearly 2^{ℵ₀} many types but what is the density of these types?

Definition 1, cont'd

- Suppose that *p*(*x*) is any type over *M*. *p*(*x*) determines the orthogonal projection of *x* onto *M*; call this *u_p*. Otherwise, *p* determines the length of *x u_p* which is an element orthogonal to *M*.
- Since *M* is separable, we can specify countably many types with u_p from a countable dense set and we can have $|x u_p|$ be rational. This set of types is dense in S(M).
- To use this definition of stability, one needs to know a lot of information about the types which is usually only available if you have some form of quantifier simplification.

Definition

Suppose that *T* is a complete theory and $\varphi(\bar{x}, \bar{y})$ is a formula. *T* is said to have the order property with respect to φ if there are numbers r < s, $M \models T$ and a sequence $\langle a_n b_n : n \in \mathbb{N} \rangle \subseteq M$ such that

 $\varphi(a_m, b_n) \leq r \text{ if } m \leq n \text{ and } \varphi(a_m, b_n) \geq s \text{ if } m > n$

T is said to have the order property if it has the order property with respect to some formula.

• Urysohn space has the order property: picture.

- Fix a saturated model *M* and suppose we have a ternary relation ↓ between small subsets of *M* (of size < χ(*M*)). We define a series of properties such a relation might have:
- (Invariance) For any $\sigma \in Aut(M)$, $A \downarrow_C B$ iff $\sigma(A) \downarrow_{\sigma(C)} \sigma(B)$.
- (Symmetry) $A \downarrow_C B$ iff $B \downarrow_C A$.
- (Transitivity) If $C \subseteq D$ then $A \downarrow_B C$ and $A \downarrow_{BC} D$ iff $A \downarrow_B D$.
- (Extension) If $B \subseteq C \subseteq D$ and $A \downarrow_B C$ then there is $\sigma \in Aut(M/C)$ such that $\sigma(A) \downarrow_C D$.

Definition 3, cont'd

- (Finite character) $A \downarrow_C B$ iff for all finite $A_0 \subseteq A$, $B_0 \subseteq B$, $A_0 \downarrow_C B_0$.
- (Local character) There is a κ such that for all A and B, there is B₀ ⊆ B such that χ(B₀) ≤ κ + χ(A) and A ↓_{B₀} B.
- (Stationarity) For any A and N < M, if N ⊆ C and σ ∈ Aut(M/N) such that A ↓_N C and σ(A) ↓_N C then there is μ ∈ Aut(M/C) such that μ(A) = σ(A).

Definition

We say that M or Th(M) supports a stationary independence relation if it has a ternary relation between small subsets which satisfies all of the above conditions.

Definition 3, cont'd

- This notion is a weakening of the van der Waerden axioms for a dependence relation. You can't define dimension using this relation; you do have the exchange property.
- The theory of an infinite dimensional Hilbert space supports a stationary independence relation. Define ↓ by A ↓_C B iff if a ∈ ⟨AC⟩ and a is orthogonal to C then a is orthogonal to B.
- Notice that if *T* supports a stationary independence relation then *T* is stable:
- Fix λ such that λ^κ = λ where κ ≥ χ(L) and κ satisfies the local character axiom. Choose M ⊨ T with χ(M) ≤ λ. If p ∈ S(M) then p is the unique extension of some type p↾_{M₀}, M₀ < M and χ(M₀) ≤ κ.
- There are at most λ^κ many possible M₀'s and 2^κ many possible types over each M₀ so |S(M)| ≤ λ^κ = λ.
- We only used some of the axioms here: invariance, stationarity, local character, transitivity.

- Suppose that *L* is separable and *M* is a separable *L*-structure. Fix non-principal ultrafilters *U* and *V* on \mathbb{N} and ask if $M^U \cong M^V$.
- Unfortunately, this question is dependent a little on cardinalities. Remember that M^U is ℵ₁-saturated and so if 2^{ℵ₀} = ℵ₁, it would be saturated. So then M^U ≅ M^V since they are elementarily equivalent.
- What if this happens even if CH does not hold? If it happens that M^U ≅ M^V for all non-principal ultrafilters U, V on N no matter what the value of the continuum, we say that these ultrapowers are necessarily isomorphic.

Theorem

The following are equivalent:

- T is stable.
- I does not have the order property.
- 3 T supports a stationary independence relation.
- I (L separable) For all (any) separable models of T, the ultrapowers with respect to non-principal ultrafilters on ℕ are necessarily isomorphic.
 - We have seen that 3 implies 1. The rest are difficult and require the introduction of several new techniques.

Definition

Suppose that (I, <) is a linear order and $\langle \bar{a}_i : i \in I \rangle$ is an *I*-indexed sequence in some model *M*. Then this sequence is said to be indiscernible if whenever $i_1 < i_2 < \ldots < i_n$ and $j_1 < j_2 < \ldots < j_n$ then $t(a_{i_1} \ldots a_{i_n}) = t(a_{j_1} \ldots a_{j_n})$.

Theorem

Suppose that M is a non-compact metric structure. Then for any (I, <) there is an $M' \models Th(M)$ and an I-indexed non-constant indiscernible sequence in M'.

Since *M* is not compact there is an *ϵ* > 0 such that *M* is not covered by finitely many *ϵ*-balls. Fix an infinite set {*a_i* : *i* ∈ ℕ} such that for *i* ≠ *j*, *d*(*a_i*, *a_j*) ≥ *ϵ*.

Indiscernibles, cont'd

• We need to show that Th(M) is satisfiable with the set of formulas, for each $\varphi(x_1, \ldots, x_n)$, $k \in \mathbb{N}$ and $i_1 < \ldots < i_n, j_1 < \ldots < j_n$ in I,

$$|\varphi(c_{i_1},\ldots,c_{i_n})-\varphi(c_{j_1},\ldots,c_{i_n})|\leqslant 1/k$$

and for every $i \neq j$ in I, $d(c_i, c_j) \ge \epsilon$.

- We do this by compactness so fix finitely many formulas $\varphi_1, \ldots, \varphi_m$ and $k_1, \ldots, k_m \in \mathbb{N}$. We may assume that all the formulas have the same number of free variables say x_1, \ldots, x_n .
- Fix finite 1/k_i-partitions P_i of the range of φ_i. We define a colouring of *n*-element subsets of N by P₁ × ... × P_n: if i₁ < ... < i_n in N, let

 $f(\{i_1,\ldots,i_n\}) = (p_1,\ldots,p_n)$ iff for all $i \leq m, \varphi_i^M(a_{i_1},\ldots,a_{i_n}) \in p_i$

- By Ramsey's Theorem, we can find a homogeneous subset of N such that *f* takes a constant value on *n*-element subsets of this set.
- Moreover, all the elements of the homogeneous subset are at least *ϵ* apart.
- We conclude that our set of formulas is satisfiable and we find *M*['] which contains an *I*-indiscernible sequence.
- Example: In an infinite dimensional Hilbert space, an orthonormal set is indiscernible ordered any way you like.
- The sequence which witnessed the order property for Urysohn space was also indiscernible ordered in the way it was given.

Corollary (to the previous proof)

If T has the order property then T is unstable.

- Proof sketch: Fix φ(x̄, ȳ) and r < s which witnesses the order property. Using the same style of proof from the previous theorem we can prove that for any ordered set (*I*, <), we can find M ⊨ T and *I*-indexed indiscernible sequence ⟨a_ib_i : i ∈ I⟩ such that φ(ā_i, b_j) ≤ r if i ≤ j and φ(a_i, b_j) ≥ s if i > j.
- Now fix a cardinal λ and choose κ least such that 2^κ > λ. Then κ ≤ λ and 2^{<κ} ≤ λ.
- Order 2^{κ} by $\eta < \mu$ if, for the greatest α such that $\eta \upharpoonright_{\alpha} = \mu \upharpoonright_{\alpha}, \eta(\alpha) < \mu(\alpha).$
- Identify 2^{<κ} with those elements of 2^κ which are eventually 0.

Proof cont'd

- Pick a model *M* and a 2^{κ} -indexed indiscernible sequence $\langle a_{\eta}b_{\eta} : \eta \in 2^{\kappa} \rangle$ ordered by φ .
- Let $B = \{b_{\eta} : \eta \in 2^{<\kappa}\}$, a set of size $\leq \lambda$.
- For $\eta \in 2^{\kappa} \setminus 2^{<\kappa}$, consider all the types $t(a_{\eta}/B)$. Now if $\eta < \mu$, choose $\bar{\mu} \in 2^{<\kappa}$ such that $\eta < \bar{\mu} < \mu$. Then

 $\varphi(a_{\eta}, b_{\bar{\mu}}) \leqslant r \text{ and } \varphi(a_{\mu}, b_{\bar{\mu}}) \geqslant s$

- So t(a_η/B) and t(a_μ/B) are not equal. Moreover, if ε = s-r/2 and we choose δ from the continuity modulus for φ in the x̄-variable, we see that t(a_η/B) and t(a_μ/B) are at least δ apart so χ(S(B)) ≥ 2^κ > λ and χ(B) ≤ λ.
- *B* isn't a model but we could extend *B* to a model of the same density character and we would still have too many separated types over this model.
- So the order property implies that *T* is not λ-stable for any λ.

Unstable implies order

Definition

We say $p(x) \in S(M)$ is finitely determined if for every formula $\varphi(x, y)$ and every $\epsilon > 0$ there is a finite $B \subseteq M$ and $\delta > 0$ such that for all $c_1, c_2 \in M$, if

$$\max_{\boldsymbol{b}\in\boldsymbol{B}}|\varphi(\boldsymbol{b},\boldsymbol{c}_1)-\varphi(\boldsymbol{b},\boldsymbol{c}_2)|<\delta$$

then

$$| \boldsymbol{p}^{arphi(\boldsymbol{x}, \boldsymbol{c_1})} - \boldsymbol{p}^{arphi(\boldsymbol{x}, \boldsymbol{c_2})} | \leqslant \epsilon$$

Theorem

The following are equivalent:

- T is stable.
- I does not have the order property.
- So For every $M \models T$, every type in S(M) is finitely determined.

Unstable implies order: proof

- We just proved that 1 implies 2. Let's show that 3 implies 1.
- Fix λ such that $\lambda^{\chi(L)} = \lambda$. Then if $M \models T$ and $\chi(M) \leq \lambda$, there are at most $\lambda^{\chi(L)} = \lambda$ many types in S(M) by finite determinancy. So *T* is λ -stable.
- We show now that the failure of 3 implies the existence of order. So fix a type p(x) ∈ S(M) which is not finitely determined say witnessed by a formula φ(x, y) and ε > 0.
- We use p to construct a sequence a_ib_ic_i in M inductively; assume we have constructed these for all i < j.
- By assumption, we know that we can find b_i and c_i so that

$$\max_{i < j} |\varphi(a_i, b_j) - \varphi(a_i, b_j)| < \frac{\epsilon}{6} \text{ and } |p^{\varphi(x, b_j)} - p^{\varphi(x, c_j)}| > \epsilon$$

Unstable implies order: proof, cont'd

Now by the approximate finite satisfiability of *p*, we can find *a_j* ∈ *M* so that

$$|\varphi(a_j, b_j) - p^{\varphi(x, b_j)}| \leqslant rac{\epsilon}{3} ext{ and } |\varphi(a_j, c_j) - p^{\varphi(x, c_j)}| \leqslant rac{\epsilon}{3}$$

• So we have that if $i \leq j$

$$|\varphi(\boldsymbol{a}_i, \boldsymbol{b}_j) - \varphi(\boldsymbol{a}_i, \boldsymbol{c}_j)| \leq rac{\epsilon}{6}$$

and for i > j,

$$|\varphi(\boldsymbol{a}_i, \boldsymbol{b}_j) - \varphi(\boldsymbol{a}_i, \boldsymbol{c}_j)| \geq rac{\epsilon}{3}$$

If we let θ(x₁y₁z₁, x₂y₂z₂) := |φ(x₁, y₂) - φ(x₁, z₂)| then θ orders the sequence ⟨a_ib_ic_i : i ∈ ℕ⟩.