Ehrenfeucht-Fraïssé games revised

- Fix $\varphi_1(\bar{x}), \ldots, \varphi_k(\bar{x})$ atomic formulas in the variables x_1, \ldots, x_n and $\epsilon > 0$
- The EF-game of length *n* with respect to this data is played as follows:
- Player 1 chooses either a₁ ∈ M or b₁ ∈ N respecting the sort of x₁; player 2 chooses b₂ ∈ N or a₂ ∈ M respectively.
- Player 1 and Player 2 alternate in this manner until they have produced two sequences $a_1, \ldots, a_n \in M$ and $b_1, \ldots, b_n \in N$.
- Player 2 wins if for all i, $|\varphi_i(\bar{a}) \varphi_i(\bar{b})| \leq \epsilon$.

Theorem

 $M \equiv N$ iff Player 2 has a winning strategy for all EF-games.

Definition

- Suppose that *M* is a metric structure in a language *L* and that $A \subseteq M$. The language L_A is *L* together with a new constant symbol for each $a \in A$. *M* can be canonically expanded to a structure in this language by letting *a* name its constant.
- The atomic diagram of *M*, *Diag_{at}(M)*, is the theory in the language L_M containing the conditions φ(ā) ≤ r + 1/n for all r ∈ R, n ∈ N and atomic formulas φ such that φ^M(ā) ≤ r.
- The elementary diagram of *M*, *Diag_{el}(M)*, is the theory in the language *L_M* containing the conditions φ(ā) ≤ r + 1/n for all r ∈ R, n ∈ N and any formulas φ such that φ^M(ā) ≤ r.

Proposition

- $N \models Diag_{at}(M)$ iff M embeds into N.
- $N \models Diag_{el}(M)$ iff M elementarily embeds into N.

Type-space notation

Suppose *M* is a metric structure and $A \subseteq M$. Fix a tuple of sorts \bar{s} . Then $S_{\bar{s}}^{M}(A)$ is the collection of all complete types in some fixed tuple of variables from the sorts \bar{s} in the language L_A which are approximately finitely satisfied in *M*. We will often omit the superscript and subscript if they are clear from context.

Saturated models

Definition

Fix an infinite cardinal κ .

- *M* is κ -saturated if for all $A \subseteq M$ such that $|A| < \kappa$ and $p \in S(A)$, *p* is realized in *M*.
- *M* is saturated if *M* is $\chi(M)$ -saturated.
- *M* is *κ*-universal if whenever *N* ≡ *M* and *χ*(*N*) < *κ* then *N* embeds into *M* elementarily.
- *M* is κ -homogeneous if whenever \bar{a} and \bar{b} are $< \kappa$ -sequences of the same length and $(M, \bar{a}) \equiv (M, \bar{b})$ then for all $a \in M$, there is $b \in M$ such that $(M, \bar{a}, a) \equiv (M, \bar{b}, b)$.

Proposition

M is κ -saturated iff it is κ -universal and κ -homogeneous.

Proposition

Given any κ and model M with $\kappa, \chi(M) \ge \chi(L)$, there is N, $M \prec N$ such that N is κ^+ -saturated and $\chi(N) \le \chi(M)^{\kappa}$.

- Sketch of proof: Start with *M* and form a chain of models M_{α} for $\alpha < \kappa^+$.
- Make sure that at each stage the density character is $\leq \chi(\mathbf{M})^{\kappa}$.
- This is possible because to start there will be at most *χ*(*M*)^κ many subsets of size κ to worry about and at most 2^κ many types over each set.
- By using elementary diagrams and downward Lowenheim-Skolem, we will be able to realize all these types without making the density character go above χ(M)^κ.

Saturated models, cont'd

 Note that with a little help from cardinal arithmetic, we can have saturated models. For instance, if 2^{ℵ0} = ℵ₁, then any separable model can be extended to a saturated model of density character ℵ₁.

Theorem

If M_n for $n \in N$ are L-structures for a separable language L then $\prod_{n \in N} M_n / U$ is \aleph_1 -saturated.

- Proof: Suppose that A is a countable subset of ∏_{n∈N} M_n/U and p ∈ S(A).
- Since *L* is separable, *p* is determined by countably many conditions φ_i(x̄) ≤ r_i for i ∈ N.

Saturated models, cont'd

- Since this type is approximately finitely satisfied in ∏_{n∈N} M_n/U, we can fix U_k ∈ U such that

 U₁ ⊇ U₂ ⊇ U₃...,

 ∩_{k∈N} U_k = Ø, and

 for every j ∈ U_k, M_i satisfies inf_{x̄} φ_i(x̄) ≤ r_i for all i ≤ k.
- Now define a tuple \bar{a}_j ; if $j \notin U_1$ then define it arbitrarily. Otherwise, if $j \in U_k \setminus U_{k+1}$ then fix $\bar{b} \in M_j$ such that $\varphi_i(\bar{b}) \leq r_i + 1/k$ for all $i \leq k$ and let $\bar{a}_j = \bar{b}$.
- Exercise: ā in ∏_{n∈N} M_n/U realizes p. The point is that for every j ∈ U_k, φ_i(ā_j) ≤ r_i + 1/k for all i ≤ k (it could be better) and so φ_i(ā) ≤ r_i in ∏_{n∈N} M_n/U.

Atomic models

Definition

- A model *M* is atomic if all types realized in *M* are principal.
- A model *M* is prime if whenever $M \equiv N$ then *M* embeds elementarily into *N*.

Proposition

If L is a separable language and M is a prime model then M is atomic.

• Proof: Omitting types.

Theorem

If L is a separable language and M is a separable atomic L-structure then M is prime and unique up to isomorphism.

Proof of theorem

- First we will show that if $N \equiv M$ and N is separable and atomic then $M \cong N$.
- We construct two sequences

$$a_0^0, a_0^1 a_1^1, a_0^2 a_1^2 a_2^2, \dots$$

in *M* and

$$b_0^0, b_0^1 b_1^1, b_0^2 b_1^2 b_2^2, \dots$$

in N such that

- all initials segments of the same length have the same type i.e. for any *k* there is a fixed type for $a_0^n \dots a_k^n$ and $b_0^n \dots b_k^n$ independent of $n \ge k$.
- ② for every k, $\langle a_k^n : n \ge k \rangle$ and $\langle b_k^n : n \ge k \rangle$ form Cauchy sequences converging to **a**_k and **b**_k respectively.
- 3 $\{\mathbf{a}_{\mathbf{k}} : \mathbf{k} \in \mathbf{N}\}\$ and $\{\mathbf{b}_{\mathbf{k}} : \mathbf{k} \in \mathbf{N}\}\$ are dense in *M* and *N* respectively.
- If we can achieve this then the map sending a_k to b_k extends to an isomorphism from M to N.

Proof of theorem, cont'd

- To start, we enumerate countable dense subsets in *M* and *N*; call them ⟨*c_k* : *k* ∈ *N*⟩ and ⟨*d_k* : *k* ∈ *N*⟩.
- At stage 0, let $a_0^0 = c_0$. By atomicity, the type of c_0 is principal and hence realized in *N* by some b_0^0 .
- In general, we alternate steps either choosing a ck or dk and we revisit each ck and dk infinitely often in the construction.
- Assume we have chosen aⁿ₀...aⁿ_n already and we consider whatever c_k is given to us at this stage.
- Let $p(x_0, \ldots, x_n)$ be the type of $a_0^n \ldots a_n^n$ and $q(x_0, \ldots, x_{n+1})$ be the type of $a_0^n \ldots a_n^n c_k$.
- Suppose that d_q(x₀,..., x_{n+1}) is the distance function to the zero set of the type q - remember q is principal.
- So $d_q^M(a_0^n \dots a_n^n, c_k) = 0$ which means $\inf_y d_q^M(a_0^n \dots a_n^n, y) = 0.$

Proof of theorem, cont'd

- $b_0^n \dots b_n^n$ satisfies p by assumption so $\inf_y d_q^M(b_0^n \dots b_n^n, y) = 0.$
- This means we can find $b_0^{n+1} \dots b_{n+1}^{n+1}$ realizing q and such that $d(b_i^n, b_i^{n+1}) \leq 1/2^n$ for $i = 0, \dots, n$.
- This guarantees we have the required Cauchy sequences and we have the required density as well.
- If ε > 0, choose N large enough so that ∑_{n≥N} 1/2ⁿ < ε.
 Suppose we visit c_k at stage t > N.
- Then **a**_t is within ε of c_k and so the **a**_k's are dense in *M*.
 Similarly, the **b**_k's are dense in *N*.
- This shows $M \cong N$.
- To see that if *M* is separable and atomic then *M* is prime, we use the same argument but only in the forth direction.

- Fix a complete theory T in a language L.
- Suppose that $E(\bar{x}, \bar{y})$ is an *L*-formula that defines an equivalence relation in models of *T*.
- Form a new language L_E = L ∪ {S_E, π_E} where S_E is a new sort and π_E is a new function symbols with domain the sorts of the variables x̄ and range S_E.
- If $M \models T$ then we expand it to a model M_E of L_E by letting S_E be the equivalence classes of E in M and π_E the projection from appropriate tuples to their equivalence class. We let $T_E = Th(M_E)$.
- We consider the class of models of a first order theory as a category with the models as objects and elementary maps as the morphisms.

• There is a forgetful functor $F : Mod(T_E) \rightarrow Mod(T)$ which is just the reduct of the L_E structures to L. We also have the functor which sends M to M_E which goes in the other direction. This pair is an equivalence of categories; that is:

•
$$F(M_E) \cong M$$
 (in fact equals M),

$$P(N)_E \cong N, \text{ and }$$

- ③ $F : Hom(N, N') \rightarrow Hom(F(N), F(N'))$ is a bijection for all $N, N' \in Mod(T_E)$.
- One says that T_E is a conservative extension of T.

Imaginaries: the discrete case, version 2

- Suppose that φ(x̄, ȳ) is an *L*-formula and x̄ and ȳ needn't have equal length.
- Form a new language $L_{\varphi} = L \cup \{S_{\varphi}, \pi_{\varphi}\}$ where S_{φ} is a new sort and π_{φ} is a new function symbols with domain the sorts of the variables \bar{y} and range S_{φ} .
- Consider the formula *E*_φ(*ȳ*, *ȳ*') := ∀*x̄*(φ(*x̄*, *ȳ*) ↔ φ(*x̄*, *ȳ*')); this is an equivalence relation in all *L*-structures.
- If $M \models T$ then we expand it to a model M_{φ} of L_{φ} by letting S_{φ} be the equivalence classes of E_{φ} in M and π_{φ} the projection from appropriate tuples to their equivalence class. We let $T_{\varphi} = Th(M_{\varphi})$.
- The forgetful functor F : Mod(T_φ) → Mod(T) is an equivalence of categories and T_φ is a conservative extension of T.

Imaginaries: the discrete case, version 2, cont'd

- T_{φ} looks like a more general construction but it is not.
- What this construction does is create an element in S_φ for every definable set of the form φ(M, ā). This is often called adding *canonical parameters* for the following reason:
- Suppose that *M* is a saturated model of *T*. Then for all automorphisms *f* of *M*, *f* fixes φ(*M*, *ā*) setwise iff *f* fixes *ā*/*E*_φ (f induces a unique automorphism of *M*_φ which extends *f*).
- Iterating either version of this construction over all possible formulas (or equivalence relations) leads to a theory called T^{eq} which is essentially closed under the addition of canonical parameters. It has a special place among the conservatives extensions of T; we will look at this next week.

Imaginaries: the continuous case, canonical parameters

- Fix a complete theory *T* in a continuous language *L* and fix a formula φ(x̄, ȳ).
- Consider the formula $\rho_{\varphi}(\bar{y}, \bar{y}') := \sup_{\bar{x}} |\varphi(\bar{x}, \bar{y}) \varphi(\bar{x}, \bar{y}')|.$
- ρ_φ defines a pseudo-metric on the product of the sorts corresponding to the ȳ variables in all *L*-structures and ρ_φ(ȳ, ȳ') = 0 means φ(x̄, ȳ) and φ(x̄, ȳ') define the same function of the x̄-variables.
- We consider L_φ = L ∪ {S_φ, d_φ, π_φ} where S_φ is a new sort, d_φ is its metric symbol and π_φ is a function from the sorts of the ȳ variables to S_φ. The uniform continuity modulus for π_φ is the same as the uniform continuity modulus for the ȳ variables in φ.

Imaginaries: the continuous case, canonical parameters, cont'd

- If *M* is a model of *T* and *X*(*M*) is the product of the sorts corresponding to the *ȳ* variables the ρ_φ is a pseudo-metric on *X*(*M*). We define an expansion *M_φ* of *M* to *L_φ* by letting *S_φ*(*M_φ*) = *X*(*M*)/ρ_φ and *d_φ* is the induced metric; π_φ is the projection from *X*(*M*) to *S_φ*(*M_φ*).
- We let *T_φ* = *Th*(*M_φ*) and again there is a forgetful function from *Mod*(*T_φ*) to *Mod*(*T*). The question is: if *N* is a model of *T_φ* and *M* = *F*(*N*) then why is *N* ≅ *M_φ*?
- T_{φ} knows the following information: for all $m, m' \in X(M)$,

$$d_{\varphi}(\pi_{\varphi}(m),\pi_{\varphi}(m'))=
ho_{\varphi}(m,m')$$

and that π_{φ} is surjective.

Imaginaries: the continuous case, canonical parameters, cont'd

 These facts guarantee that the map *i* : S_φ(N) → X(M)/ρ_φ given by

$$i(n) = \pi_{\varphi}^{M_{\varphi}}(m)$$
 for any $m \in X(M)$ such that $\pi_{\varphi}^{N}(m) = n$

is well-defined and a surjective isometry.

Imaginaries: the continuous case, products

- Fix a complete theory T in a continuous language L.
- Suppose $\overline{S} = \langle S_n : n \in N \rangle$ is a sequence of sorts from *L*. The goal is to create $\prod_{n \in N} S_n$ as a new sort.
- Take a model of *T* and let $X_{\overline{S}} = \prod_{n \in N} X_{S_n}(M)$. We need a metric on $X_{\overline{S}}$.
- Suppose d_i is the metric on S_i with bound B_i ; let

$$d(\bar{x}, \bar{y}) = \sum_{i \in N} \frac{d_i(x_i, y_i)}{B_i 2^i}$$

where $\bar{x}, \bar{y} \in X_{\bar{S}}(M)$.

- *d* is a metric on X_{S̄}(*M*) which is complete and bounded by
 1.
- We have projection maps π_i : X_{S̄}(M) → X_{S_i}(M) sending x̄ to x_i.
- Notice that if d(x̄, ȳ) < δ then d_i(x_i, y_i) < B_i2ⁱδ so π_i is uniformly continuous.

- Let L_{S̄} = L ∪ {S_{S̄}, d_{S̄}, {π_i : i ∈ N}} where S_{S̄} is a new sort, d_{S̄} is its metric symbol and π_i is a function symbol with domain S_{S̄}, range S_i and uniform continuity modulus given as above.
- The construction above shows how to take a model *M* of *T* and produce a model M_{S̄} of L_{S̄}. Let T_{S̄} = Th(M_{S̄}).
- Once again we have a forgetful functor $F: Mod(T_{\overline{S}}) \rightarrow Mod(T)$ and we would like to see that it is an equivalence of categories.
- We need to see if $N \models T_{\bar{S}}$ and M = F(N) then $M_{\bar{S}} \cong N$ fixing M.

Imaginaries: the continuous case, products cont'd

- For $n \in X_{\overline{S}}(N)$, let $\rho(n) = \langle \pi_i(n) : i \in N \rangle \in \prod_{i \in N} X_{\overline{S}_i}(M)$.
- If this map is a surjective isometry then it commutes with the π_i's and so is an isomorphism.
- Notice that follows from the theory $T_{\overline{S}}$ that for all $n, n' \in X_{\overline{S}}(N)$, and $k \in N$,

$$\left| d_{\bar{S}}(n,n') - \sum_{i \leqslant k} \frac{d_i(\pi_i(n),\pi_i(n'))}{B_i 2^i} \right| \leqslant \frac{1}{2^k}$$

which shows that ρ is an isometry.

Imaginaries: the continuous case, products cont'd

It is also part of the theory that for any k

```
\sup_{x_1 \in S_1} \dots \sup_{x_k \in S_k} \inf_{y \in S_{\bar{S}}} \max\{d_i(x_i, \pi_i(y)) : i \leq k\}
```

evaluates to 0.

- By completeness of $X_{\overline{S}}(N)$, ρ is surjective.
- So $M_{\bar{S}} \cong N$ fixing M and $T_{\bar{S}}$ is a conservative extension of T.
- One issue is that the metric we defined is not canonical there are other metrics we could have used. We will have to return to this.