Theorem

- T is stable.
- I does not have the order property.
- T supports a stationary independence relation.
- (L separable) For all (any) separable models of T, the ultrapowers with respect to non-principal ultrafilters on N are necessarily isomorphic.

From last time, cont'd

Definition

Suppose that (I, <) is a linear order and $\langle \bar{a}_i : i \in I \rangle$ is an *I*-indexed sequence in some model *M*. Then this sequence is said to be indiscernible if whenever $i_1 < i_2 < \ldots < i_n$ and $j_1 < j_2 < \ldots < j_n$ then $t(a_{i_1} \ldots a_{i_n}) = t(a_{j_1} \ldots a_{j_n})$.

Theorem

Suppose that M is a non-compact metric structure. Then for any (I, <) there is an $M' \models Th(M)$ and an I-indexed non-constant indiscernible sequence in M'.

- Example: In an infinite dimensional Hilbert space, an orthonormal set is indiscernible ordered any way you like.
- The sequence which witnessed the order property for Urysohn space was also indiscernible ordered in the way it was given.

Corollary (to the previous proof)

If T has the order property then T is unstable.

- Proof sketch: Fix φ(x̄, ȳ) and r < s which witnesses the order property. Using the same style of proof from the previous theorem we can prove that for any ordered set (*I*, <), we can find M ⊨ T and *I*-indexed indiscernible sequence ⟨a_ib_i : i ∈ I⟩ such that φ(a_i, b_j) ≤ r if i ≤ j and φ(a_i, b_j) ≥ s if i > j.
- Now fix a cardinal λ and choose κ least such that 2^κ > λ. Then κ ≤ λ and 2^{<κ} ≤ λ.
- Order 2^{κ} by $\eta < \mu$ if, for the greatest α such that $\eta \upharpoonright_{\alpha} = \mu \upharpoonright_{\alpha}, \eta(\alpha) < \mu(\alpha).$
- Identify 2^{<κ} with those elements of 2^κ which are eventually 0.

Proof cont'd

- Pick a model *M* and a 2^{κ} -indexed indiscernible sequence $\langle a_{\eta}b_{\eta} : \eta \in 2^{\kappa} \rangle$ ordered by φ .
- Let $B = \{b_{\eta} : \eta \in 2^{<\kappa}\}$, a set of size $\leq \lambda$.
- For $\eta \in 2^{\kappa} \setminus 2^{<\kappa}$, consider all the types $t(a_{\eta}/B)$. Now if $\eta < \mu$, choose $\bar{\mu} \in 2^{<\kappa}$ such that $\eta < \bar{\mu} < \mu$. Then

 $\varphi(a_{\eta}, b_{\bar{\mu}}) \leqslant r \text{ and } \varphi(a_{\mu}, b_{\bar{\mu}}) \geqslant s$

- So t(a_η/B) and t(a_μ/B) are not equal. Moreover, if ε = s-r/2 and we choose δ from the continuity modulus for φ in the x̄-variable, we see that t(a_η/B) and t(a_μ/B) are at least δ apart so χ(S(B)) ≥ 2^κ > λ and χ(B) ≤ λ.
- *B* isn't a model but we could extend *B* to a model of the same density character and we would still have too many separated types over this model.
- So the order property implies that *T* is not λ-stable for any λ.

In fact, we can say more (and this will be useful later): The previous proof showed that if φ has the order property then for every λ there is a model *M*_λ with χ(*M*_λ) ≤ λ such that χ(*S*_φ(*M*_λ)) > λ where *S*_φ(*M*) is the set of φ-types over *M*. The metric on this space of types is given by

$$\sup_{b\in M} |p^{\varphi(x,b)} - q^{\varphi(x,b)}|$$

Unstable implies order

Definition

We say $p(x) \in S(M)$ is finitely determined if for every formula $\varphi(x, y)$ and every $\epsilon > 0$ there is a finite $B \subseteq M$ and $\delta > 0$ such that for all $c_1, c_2 \in M$, if

$$\max_{\boldsymbol{b}\in\boldsymbol{B}}|\varphi(\boldsymbol{b},\boldsymbol{c}_1)-\varphi(\boldsymbol{b},\boldsymbol{c}_2)|<\delta$$

then

$$| p^{\varphi(x,c_1)} - p^{\varphi(x,c_2)} | \leqslant \epsilon$$

Theorem

- T is stable.
- I does not have the order property.
- So For every $M \models T$, every type in S(M) is finitely determined.

Unstable implies order: proof

- We just proved that 1 implies 2. Let's show that 3 implies 1.
- Fix λ such that λ^{χ(L)} = λ. Then if M ⊨ T and χ(M) ≤ λ, there are at most λ^{χ(L)} = λ many types in S(M) by finite determinancy. So T is λ-stable.
- We show now that the failure of 3 implies the existence of order. So fix a type p(x) ∈ S(M) which is not finitely determined say witnessed by a formula φ(x, y) and ε > 0.
- We use p to construct a sequence a_ib_ic_i in M inductively; assume we have constructed these for all i < j.
- By assumption, we know that we can find b_i and c_i so that

$$\max_{i < j} |\varphi(a_i, b_j) - \varphi(a_i, c_j)| < \frac{\epsilon}{6} \text{ and } |p^{\varphi(x, b_j)} - p^{\varphi(x, c_j)}| > \epsilon$$

Unstable implies order: proof, cont'd

Now by the approximate finite satisfiability of *p*, we can find *a_i* ∈ *M* so that for all *i* ≤ *j*

$$|\varphi(a_j, b_i) - p^{\varphi(x, b_i)}| \leqslant rac{\epsilon}{3} ext{ and } |\varphi(a_j, c_i) - p^{\varphi(x, c_i)}| \leqslant rac{\epsilon}{3}$$

• So we have that if i < j

$$|\varphi(\boldsymbol{a}_i, \boldsymbol{b}_j) - \varphi(\boldsymbol{a}_i, \boldsymbol{c}_j)| \leq \frac{\epsilon}{6}$$

and for $i \ge j$,

$$|\varphi(\boldsymbol{a}_i, \boldsymbol{b}_j) - \varphi(\boldsymbol{a}_i, \boldsymbol{c}_j)| \geq \frac{\epsilon}{3}$$

If we let θ(x₁y₁z₁, x₂y₂z₂) := |φ(x₁, y₂) - φ(x₁, z₂)| then θ orders the sequence ⟨a_ib_ic_i : i ∈ ℕ⟩.

- We now focus on showing that a stable theory has a stationary independence relation. We fix a saturated model *M* and work entirely inside *M*.
- If p ∈ S(A) and A' = σ(A) for some automorphism of M σ, we write p_{A'} for σ(p).

Definition

We say that a satisfiable partial type $p(x) \in S(B)$ divides over A if there is an A-indiscernible sequence $\langle B_i : i \in \mathbb{N} \rangle$ such that $B_0 = B$ and $\bigcup \{ p_{B_i} : i \in \mathbb{N} \}$ is not satisfiable.

Examples of dividing/non-dividing

- In discrete model theory, we can consider an algebraically closed field and a type p(x) over A. p does not divide over the empty set iff p says x is algebraic over A only when x was already algebraic over the empty set.
- More generally if above, p(x̄) is a type in more than one variable over A then p does not divide over the empty set iff p implies that the transcendence degree of x̄ over A is the same as the transcendence degree of x̄ over the empty set.
- In the theory of infinite dimensional Hilbert spaces, a type p(x) over a parameter set A does not divide over the empty set iff any realization of p is orthogonal to A.
- In the theory of Urysohn space, p(x) over a single point a does or does not divide over the empty set depending on d(x, a).

- For any theory, we will define A ↓_C B to mean t(A/BC) does not divide over C. What properties does this relation have?
- Invariance is immediate from the definition.
- Finite character follows from compactness.
- The direction of transitivity that says that if $C \subseteq D$ and $A \downarrow_B D$ then $A \downarrow_B C$ and $A \downarrow_{BC} D$ is also immediate.
- Local character, symmetry and stationarity will have to wait until we assume stability. Let's look at transitivity and extension. First we prove a lemma.

A lemma

Lemma

- **①** a↓_A b
- Por every A-indiscernible sequence I such that b ∈ I there is a' =_{Ab} a such that I is Aa'-indiscernible.
- **③** For every A-indiscernible sequence I such that b ∈ I there is $J \equiv_{Ab} I$ such that J is Aa-indiscernible.
 - Conditions 2 and 3 are readily equivalent and 2 implies 1 is straightforward.
 - We will show that 1 implies 3. For convenience, assume that A is empty and p(x) is the type of a over b.
 - Fix any indiscernible sequence *I* with *b* ∈ *I* and we wish to find the requisite *J*. We do this by compactness.

- Write down formulas Σ that express the fact that J has the same type as I over b; J is indiscernible over a and that the type of a over c for any individual $c \in J$ is p_c .
- Now stretch *I* to an indiscernible sequence *I'* of size $\exists_{\omega}(2^{\chi(T)})$; this can be done by compactness.
- What we know from the fact that *p* does not divide over the empty set is that {*p_c* : *c* ∈ *I*'} is satisfiable.
- By the Erdos-Rado theorem, we can show that Σ is consistent because for any *n*, there are at most 2^{χ(T)} many *n*-types over *a* witnessed among the *n*-tuples from *I*'.

Proposition

Left transitivity If $B \subseteq C \subseteq D$, $D \downarrow_C A$ and $C \downarrow_B A$ then $D \downarrow_B A$.

- Proof: we use the lemma we just proved. Fix a B-indiscernible sequence I such that A ∈ J.
- Since C ↓_B A, we can find J with the same type as I over BA and which is C-indiscernible.
- But then since $D \downarrow_C A$, we can find K with the same type as J over CA which is D-indiscernible.
- So *K* has the same type as *I* over *BA* and is *D*-indiscernible so $D \downarrow_B A$ by the lemma.
- Conclusion: If we have symmetry of dividing then transitivity is for free.

Discrete stability

Definition

We say that *T* is discretely λ -stable if for any *M* such that $\chi(M) \leq \lambda$, $|S(M)| \leq \lambda$.

Theorem

- T is stable.
- **2** *T* is λ -stable for all λ such that $\lambda^{\chi(T)} = \lambda$.
- **③** *T* is discretely λ -stable for all λ such that $\lambda^{\chi(T)} = \lambda$.
 - 3 implies 2 implies 1 are straightforward.
 - For 1 implies 3, remember that if *T* is stable then every type over a model is finitely determined.
 - So, for every formula φ , $|S_{\varphi}(M)| \leq |M|^{\aleph_0}$.

•
$$|\mathcal{S}(\mathcal{M})| \leq |\mathcal{M}|^{\aleph_0 \cdot \chi(\mathcal{M})} = |\mathcal{M}|.$$

Theorem

If T is stable then dividing has local character.

- In fact, local character of dividing is equivalent to a notion called simplicity (more general than stability).
- We will show that if dividing fails to have local character with κ = χ(T) then the theory is unstable.
- Fix a type $p \in S(B)$ which divides over every subset $B_0 \subseteq B$ with $|B_0| \leq \kappa$.
- Start with B₀ = Ø and define a continuous increasing chain of subsets B_α for α < χ(T)⁺ such that

1
$$|B_{lpha}| \leqslant \kappa$$
 and

2
$$p \upharpoonright_{B_{\alpha+1}}$$
 divides over B_{α} for every α .

Local character, cont'd

- Choose λ such that $\lambda^{\kappa^+} > \lambda^{\kappa} = \lambda \ge 2^{\kappa^+}$.
- Now define a tree of sets $\langle B_{\eta} : \eta \in \lambda^{<\kappa^+} \rangle$ such that
 - For all $\eta \in \lambda^{\kappa^+}$, $\langle B_{\eta \uparrow \alpha} : \alpha < \kappa^+ \rangle \equiv \langle B_{\alpha} : \alpha < \kappa^+ \rangle$ and
 - 2 for every η ∈ λ^{<κ⁺}, ⟨B_{η∧i} : i < λ⟩ is indiscernible of order type λ over B_η which witnesses an automorphic copy of the fact that p↾_{B_{α+1}} divides over B_α where α = len(η).
- Let p_{η} for $\eta \in \lambda^{\kappa^+}$ be the automorphic image of p with domain $\bigcup_{\alpha < \kappa^+} B_{\eta \upharpoonright_{\alpha}}$.
- Let P_{η} be a maximal mutually satisfiable collection of p_{ν} which contains p_{η} .
- $|P_{\eta}| \leq \aleph_0^{\kappa^+}$.
- It follows then that the P_η's represent, altogether, λ^{κ⁺} many types over λ^κ many parameters and this contradicts discrete λ-stability.