- Some terminology
- The statement of conceptual completeness
- Two examples
- Stable embeddedness
- Imaginaries in the continuous context
- The proof

Definition

Suppose that $F : C \rightarrow D$ is a functor then we say that

- F is full if for all objects c, c' ∈ C,
 F : Hom(c, c') → Hom(F(c), F(c')) is onto.
- *F* is failthful if for all objects $c, c' \in C$, $F : Hom(c, c') \rightarrow Hom(F(c), F(c'))$ is injective.
- *F* is dense if for all objects *d* in *D*, there is $c \in C$ such that $F(c) \cong d$.
- *F* is an equivalence of categories if *F* is full, faithful and dense.

Some terminology, cont'd

- If L ⊆ L' are two languages, T and T' are complete theories in L and L' respectively then we call
 F : Mod(T') → Mod(T) the forgetful functor if it takes
 M ⊨ T' to M's restriction to L.
- F is full if whenever f : F(M) → F(M') is an elementary map, it is the restriction of a map between M and M' or in other words, maps between models of T lift to maps between models of T'.
- *F* is faithful means that if a map between F(M) and F(M') lifts to one between *M* and *M'* then this lifting is unique.
- *F* is dense if every model of *T* can be expanded to a model of *T*'.

Conceptual completeness

- The question we are trying to understand is when two complete theories T and T' possibly in different languages L and L' have equivalent categories of models.
- We will answer the slightly simpler looking question: if $T \subseteq T'$ and $L \subseteq L'$ and the forgetful functor $F: Mod(T') \rightarrow Mod(T)$ is an equivalence of categories then what can we say about T'. The answer is that we will be able to interpret T' in T^{eq} which we still have to describe in full.
- Notice in the description of the problem that *L'* could have new sorts or could have new functions and relation symbols which act on the old sorts (or both of these).

- These two examples are in the first order context to give a sense of what is possible.
- The first example should be considered in light of the fact that for continuous logic one can add countable products without changing the category of models.
- Suppose *T* is a complete theory in a language *L* and *S_n* for $n \in \mathbb{N}$ are countably many sorts from *L*.
- Let $L' = L \cup \{S, \{\pi_n : n \in \mathbb{N}\}\}$ and expand models of T, M, to an L'-structure M' by letting $S(M') = \prod_{n \in \mathbb{N}} S_n(M)$ and π_n be the projection onto the nth coordinate. Let T' = Th(M').

- The claim is that T' does not capture the product in a first order manner or more formally that
 F : Mod(T') → Mod(T) is not an equivalence of categories.
- To see this, consider the set of formulas:

$$\Sigma = \{\pi_n(x) = \pi_n(y) : n \in \mathbb{N}\} \cup \{x \neq y\}$$

• Σ is consistent with T' and so there is a model of T' in which the sort S is not the product of the sorts S_n . One can check that the forgetful functor is not faithful here.

Example 2

- Suppose that T is a complete theory in a first order language L and that E(x, y) is a countable partial type which defines an equivalence relation in models of T.
- For example, if $T = Th(\mathbb{R})$ and $E(x, y) = \{|x y| \leq 1/n : n \in \mathbb{N}\}$ then *E* is such a partial type.
- The equivalence classes of a type-definable equivalence relation are called hyperimaginaries and various approaches have been taken to deal with them smoothly.
- They are important canonical objects associated to models of a first order theory. Let's see that unfortunately we can't capture them in the same manner we capture equivalence classes of definable equivalence relations.

Example 2, cont'd

- Suppose that we expand *L* to *L'* by adding a new sort *S* and map π.
- If *M* is a model of *T*, expand it to *M'* by letting *S*(*M'*) be the set of *E*-equivalence classes in *M* and π the canonical projection.
- Now let T' = Th(M') and consider if the forgetful functor is an equivalence of categories.
- Consider the following set of formulas

 $\boldsymbol{\Sigma} = \{ \varphi(\boldsymbol{x}, \boldsymbol{y}) : \varphi \in \boldsymbol{E} \} \cup \{ \pi(\boldsymbol{x}) \neq \pi(\boldsymbol{y}) \}$

- Σ is inconsistent with T' iff E is definable i.e. equivalent to the conjunction of finitely many formulas.
- If Σ is consistent then we see that not all models interpret S as the hyperimaginaries.
- Hyperimaginaries can be captured by continuous logic; we'll return to this.

Beth definability

- Fix a complete theory *T* in a language *L* in discrete first order logic.
- Suppose that *P* is a new predicate symbol and $L_P = L \cup \{P\}.$

Theorem

Beth Definability Suppose that T and T_P are complete theories in L and L_P such that $T \subseteq T_P$ and that for each $M \models T$, there is a unique way M_P to expand M to a model of T_P . Then T_P proves that P is equivalent to an L-formula.

• The theorem says in terms of forgetful functors that the forgetful functor from $Mod(T_P)$ to Mod(T) is an equivalence of categories.

Proof of Beth definability

 We sketch a proof to illustrate a certain style of proof; we could also prove a version of this in continuous logic but we will prove something more general so we just highlight the proof method.

Let

$$\Sigma = \{\varphi(\bar{x}) : T_{\mathcal{P}} \models \mathcal{P}(\bar{x}) \to \varphi(\bar{x}), \varphi(\bar{x}) \text{ is an } L\text{-formula}\}$$

- If Σ is not consistent with $\neg P(\bar{x})$ then T_P proves that P is equivalent to an L-formula; if Σ is not consistent with $P(\bar{x})$ then T_P proves P is empty. In either case, we are done and so we assume that Σ is consistent with both $P(\bar{x})$ and $\neg P(\bar{x})$.
- Let Σ* be a maximal collection of *L*-formulas containing Σ and consistent with both *P* and ¬*P*. Such a Σ* exists by Zorn's Lemma; let's argue that Σ* is complete.

- Now fix a saturated model *M* of *T_P* which realizes both Σ* ∪ *P* and Σ* ∪ ¬*P* by ā and b.
- Since ā and b realize the same L-type there is an L-automorphism of M sending ā to b.
- But *M* restricted to *L* can be expanded to a model of *T_P* two ways: as *M* and as (*M*↾_L, σ(*P*)).
- They are different expansions since $\bar{b} \in \sigma(P)$ but not in P.

We return to continuous logic. Suppose *T* ⊆ *T'*, two complete theories in *L* ⊆ *L'* respectively.

Definition

If *M* is the *L*-reduct of *M'*, a model of *T'*, we say that *M* is stably embedded in *M'* if for every formula $\varphi(\bar{x}, \bar{y})$ in *L'* with \bar{x} ranging over sorts from *L* and $\epsilon > 0$, there is a formula $\psi(\bar{x}, \bar{z})$ in *L* such that for every $\bar{b} \in M'$ there is $\bar{c} \in M$ such that

$$\sup_{\bar{\boldsymbol{x}}} |\varphi(\bar{\boldsymbol{x}}, \bar{\boldsymbol{b}}) - \psi(\bar{\boldsymbol{x}}, \bar{\boldsymbol{c}})| \leqslant \epsilon$$

Theorem

With T, T' and F, the forgetful functor as above, if F is full then for every $M' \models T'$, F(M') is stably embedded in M'.

- Fix a saturated model *M'* of *T* and suppose *M* is its *L*-reduct. We'll assume that *M* is of size continuum and that the continuum hypothesis holds.
- The strategy is to show that if *M* fails to be stably embedded in *M*' then we can find an automorphism of *M* which does not lift to an automorphism of *M*'.
- To this end, fix a formula ψ(x̄, c̄) with c̄ ∈ M' and x̄ variables from the sorts of L.
- We wish to defeat all possible places that \bar{c} can go as we construct an automorphism of M.

Stable embeddedness, cont'd

• Key point: suppose that *A* is a countable subset of *M* and consider the following set of conditions for a fixed *k*:

$$\begin{split} \Sigma(\boldsymbol{A},\boldsymbol{k}) &:= \{ |\varphi(\bar{\boldsymbol{x}}) - \varphi(\bar{\boldsymbol{y}})| \leqslant 1/n : n \in \mathbb{N}, \varphi \in L_{\boldsymbol{A}} \} \\ & \cup \{ |\psi(\bar{\boldsymbol{x}},\bar{\boldsymbol{c}}) - \psi(\bar{\boldsymbol{y}},\bar{\boldsymbol{c}})| \geqslant 1/k \} \end{split}$$

- If this set of conditions is not satisfiable for any k then ψ(x̄, c̄) is a definable predicate over A which contradicts that it is not stably embedded.
- So for each countable A there is a k so that Σ(A, k) is consistent.
- We use this to build an automorphism of *M* which defeats each potential extension to *M*'.

Theorem

If F is full and faithful then F(M') is stably embedded in M' for all $M' \models T'$.

 Proof: Fix any model *M*' of *T*' and ψ(x̄, c̄) as before. Let *M* = *F*(*M*') and consider the set of conditions

$$\Sigma_{k} := \{ |\varphi(\bar{x}) - \varphi(\bar{y})| \leq 1/n : n \in \mathbb{N}, \varphi \in L_{M} \} \\ \cup \{ |\psi(\bar{x}, \bar{c}) - \psi(\bar{y}, \bar{c})| \geq 1/k \}$$

- As before, if this set of conditions is not satisfiable for all k then ψ is a definable predicate over M which is what we want.
- So assume Σ_k is satisfiable for some k. Fix N' a model of T' and $a, b \in F(N')$ satisfying Σ_k .

- By assumption, *a* and *b* have the same type over *M*.
- By considering a suitable ultrafilter *U*, we can assume that there is an elementary map *h* : *F*(*N*') → *F*(*N*'^{*U*}) such that *h* is the identity on *M* and sends *a* to *b*.
- *h* must arise as the restriction of some *h*' : *N*' → *N*'^U by the fullness of *F* and *h*' restricted to *M*' must be the identity since *h* is the identity on *M* and there is a unique lifting of this map to *M*'.
- So we have ψ(a, c) = ψ(h'(a), h'(c)) = ψ(b, c) which contradicts the choice of a and b.

Imaginaries: the continuous case, canonical parameters

- Fix a complete theory *T* in a continuous language *L* and fix a formula φ(*x*, *y*).
- Consider the formula $\rho_{\varphi}(\bar{y}, \bar{y}') := \sup_{\bar{x}} |\varphi(\bar{x}, \bar{y}) \varphi(\bar{x}, \bar{y}')|.$
- ρ_φ defines a pseudo-metric on the product of the sorts corresponding to the ȳ variables in all *L*-structures and ρ_φ(ȳ, ȳ') = 0 means φ(x̄, ȳ) and φ(x̄, ȳ') define the same function of the x̄-variables.
- We consider L_φ = L ∪ {S_φ, d_φ, π_φ} where S_φ is a new sort, d_φ is its metric symbol and π_φ is a function from the sorts of the ȳ variables to S_φ. The uniform continuity modulus for π_φ is the same as the uniform continuity modulus for the ȳ variables in φ.

Imaginaries: the continuous case, canonical parameters, cont'd

- If *M* is a model of *T* and *X*(*M*) is the product of the sorts corresponding to the *ȳ* variables the ρ_φ is a pseudo-metric on *X*(*M*). We define an expansion *M_φ* of *M* to *L_φ* by letting *S_φ*(*M_φ*) = *X*(*M*)/ρ_φ and *d_φ* is the induced metric; π_φ is the projection from *X*(*M*) to *S_φ*(*M_φ*).
- We let *T_φ* = *Th*(*M_φ*) and again there is a forgetful function from *Mod*(*T_φ*) to *Mod*(*T*). The question is: if *N* is a model of *T_φ* and *M* = *F*(*N*) then why is *N* ≅ *M_φ*?
- T_{φ} knows the following information: for all $m, m' \in X(M)$,

$$d_{\varphi}(\pi_{\varphi}(m),\pi_{\varphi}(m'))=
ho_{\varphi}(m,m')$$

and that π_{φ} is surjective.

Imaginaries: the continuous case, canonical parameters, cont'd

 These facts guarantee that the map *i* : S_φ(N) → X(M)/ρ_φ given by

$$i(n) = \pi_{\varphi}^{M_{\varphi}}(m)$$
 for any $m \in X(M)$ such that $\pi_{\varphi}^{N}(m) = n$

is well-defined and a surjective isometry.

An annoying detail

- It will be necessary to deal with finitely many formulas and their canonical parameters at a time.
- Here is a way to treat this as if there was only one formula:
- Suppose we have formulas φ(x̄, ȳ₁),..., φ(x̄, ȳ_n). Consider the formula

$$\psi(\bar{x}, i, \bar{y}_1, \ldots, \bar{y}_n)$$

where *i* ranges over some finite ordered index set $a_1 < \ldots < a_n$ and

$$\psi(\bar{\mathbf{x}}, i, \bar{\mathbf{y}}_1, \dots, \bar{\mathbf{y}}_n) = \varphi(\bar{\mathbf{x}}, \bar{\mathbf{y}}_j)$$

when $i = a_i$.

 One checks then that the canonical parameters for ψ range over the union of the canonical parameters for the φ's.

Imaginaries: the continuous case, products

- Fix a complete theory T in a continuous language L.
- Suppose $\overline{S} = \langle S_n : n \in N \rangle$ is a sequence of sorts from *L*. The goal is to create $\prod_{n \in N} S_n$ as a new sort.
- Take a model of *T* and let $X_{\overline{S}} = \prod_{n \in N} X_{S_n}(M)$. We need a metric on $X_{\overline{S}}$.
- Suppose d_i is the metric on S_i with bound B_i ; let

$$d(\bar{x}, \bar{y}) = \sum_{i \in N} \frac{d_i(x_i, y_i)}{B_i 2^i}$$

where $\bar{x}, \bar{y} \in X_{\bar{S}}(M)$.

- *d* is a metric on X_S(*M*) which is complete and bounded by
 1.
- We have projection maps π_i : X_{S̄}(M) → X_{S_i}(M) sending x̄ to x_i.
- Notice that if d(x̄, ȳ) < δ then d_i(x_i, y_i) < B_i2ⁱδ so π_i is uniformly continuous.

- Let L_{S̄} = L ∪ {S_{S̄}, d_{S̄}, {π_i : i ∈ N}} where S_{S̄} is a new sort, d_{S̄} is its metric symbol and π_i is a function symbol with domain S_{S̄}, range S_i and uniform continuity modulus given as above.
- The construction above shows how to take a model *M* of *T* and produce a model M_{S̄} of L_{S̄}. Let T_{S̄} = Th(M_{S̄}).
- Once again we have a forgetful functor $F: Mod(T_{\overline{S}}) \rightarrow Mod(T)$ and we would like to see that it is an equivalence of categories.
- We need to see if $N \models T_{\bar{S}}$ and M = F(N) then $M_{\bar{S}} \cong N$ fixing M.

Imaginaries: the continuous case, products cont'd

- For $n \in X_{\overline{S}}(N)$, let $\rho(n) = \langle \pi_i(n) : i \in N \rangle \in \prod_{i \in N} X_{\overline{S}_i}(M)$.
- If this map is a surjective isometry then it commutes with the π_i's and so is an isomorphism.
- Notice that follows from the theory $T_{\overline{S}}$ that for all $n, n' \in X_{\overline{S}}(N)$, and $k \in N$,

$$\left| d_{\bar{S}}(n,n') - \sum_{i \leqslant k} \frac{d_i(\pi_i(n),\pi_i(n'))}{B_i 2^i} \right| \leqslant \frac{1}{2^k}$$

which shows that ρ is an isometry.

Imaginaries: the continuous case, products cont'd

It is also part of the theory that for any k

```
\sup_{x_1 \in S_1} \dots \sup_{x_k \in S_k} \inf_{y \in S_{\bar{S}}} \max\{d_i(x_i, \pi_i(y)) : i \leq k\}
```

evaluates to 0.

- By completeness of $X_{\overline{S}}(N)$, ρ is surjective.
- So $M_{\bar{S}} \cong N$ fixing M and $T_{\bar{S}}$ is a conservative extension of T.
- One issue is that the metric we defined is not canonical there are other metrics we could have used. We will have to return to this.

Theorem

- T is a complete continuous theory in L;
- T is contained in T', a complete continuous theory in L' containing L;
- the forgetful functor from Mod(T') to Mod(T) is an equivalence of categories, then
- every sort in L' is in definable bijection with a definable zero set in L.

This will tell us by stable embeddedness that every L' function and relation can also be expressed as a definable predicate in L.

A sketch of the proof

- Fix a saturated model *M* of *T'* and suppose *c* ∈ *S*(*M*), S a sort from *L'*. Consider φ(*x̄*, *c*) where *x̄* ranges over sorts from *L*.
- By stable embeddedness and compactness, for each *n*, there are ψ_i(x̄, ȳ_i) for i = 1,..., m_n such that

$$\min_{i} \inf_{\bar{y}_{i}} |\varphi(\boldsymbol{x}, \boldsymbol{c}) - \psi_{i}(\bar{\boldsymbol{x}}, \bar{\boldsymbol{y}}_{i})| \leq \frac{1}{2^{n}}$$

• Let $\bar{\psi}_n$ be the single formula which codes the canonical parameters for $\psi_1 \dots \psi_{m_n}$ and $S_{\bar{\psi}_n}$ be the sort of those canoncial parameters.

$$ar{S}_{arphi} = \prod_n S_{ar{\psi}_r}$$

 The definable predicate φ(x̄, c) is captured by an element of S̄, a sort entirely in T^{eq}.

A sketch of the proof, cont'd

Consider

$$\Sigma_n = \{ \sup_{\bar{x}} |\varphi(\bar{x}, \boldsymbol{c}) - \varphi(\bar{x}, \boldsymbol{c}')| \leq \frac{1}{k} : k \in \omega, \bar{x} \in L \} \cup \{ d_{\mathcal{S}}(\boldsymbol{c}, \boldsymbol{c}') \geq \frac{1}{n} \}$$

- Σ_n is inconsistent by assumption for every n so by compactness there are countably many formulas φ_i(x̄, y) such that if two elements of S agree on all these formulas then they are equal.
- So there is a definable injection from *S* into $\prod_i \bar{S}_{\varphi_i}$ and we can identify *S* with the definable zero set which is the range of this map.