
Pine analysis

Ben Bolker, Gabe Herrick, Gordon Fox

June 26, 2011

1 To do

� double-check/figure out what’s going on with seedling fits . . .

� (perhaps) spend more time figuring out the mapping of observed means
and variances to simulation parameters: seed (lognormal-Poisson) distri-
bution is OK, seedling (logit-normal-binomial superimposed on this dis-
tribution) is klugey (but maybe fine)

� do fits/models for simulations (show theoretical and observed)

� write the damn paper!

2 Seeds

> source("pine-funs.R") ## miscellaneous utilities

Read data (as before, although this is now really shown for illustration: the
real fits were done in a batch run elsewhere):

> trapdata <- read.table("SeedsUTM-2.txt", header = TRUE)

> mc <- function(x) { x-min(x,na.rm=TRUE) }

> dmc <- function(z) { within(z, {x0 <- mc(x); y0 <- mc(y)}) }

> seeds <- with(trapdata,

data.frame(x=mc(LONG),y=mc(LAT),count=Count,

plot=toupper(Plot)))

> ## compute plot-corrected values

> seeds <- ddply(seeds,"plot",dmc)

> transdata <- read.table("LingsUTM-3.txt", header = TRUE)

> seedlings <- with(transdata,

data.frame(x=mc(Long),y=mc(Lat),count=Lcounts,

plot=factor(substr(as.character(StAndId),1,1))))

> ## compute plot-corrected values

> seedlings <- ddply(seedlings,"plot",dmc)

> save("seeds","seedlings",file="pine2.RData")

1

Plot seed data (plots ordered by mean number of seeds per samples):

x0

y0

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

A

B

H

0 10 20 30 40

F

E

J

0 10 20 30 40

D

G

C

0 10 20 30 40

empty

TRUE

FALSE

count

0

10

20

30

40

Plot seedling data (plots ordered by mean seedlings):

[1] "D" "E" "B" "J" "A" "F" "H" "G" "C" "K"

2

x0

y0

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

D

A

C

0 10 20 30 40 50

E

F

K

0 10 20 30 40 50

B

H

0 10 20 30 40 50

J

G

0 10 20 30 40 50

empty

TRUE

FALSE

count

0

2

4

6

8

10

12

14

Need some packages:

> library(ggplot2)

> library(gridExtra)

> library(gdata) ## suppress informational messages??

I did a bunch of brute-force fits of a variety of models (exponential without
nugget; {exponential, Gaussian, rational, linear, spherical} (i.e. all possibilities
in base nlme) with nugget) × (a variety of starting points for the nugget and
range parameters) × different internal optimizer choices (nlminb, optim) ×
(allowing, or not, for the variance to scale as a power of the mean) × (allowing,
or not, for linear trends within each plot) — a total of 288 model fits. (Treated
plot as a fixed effect in all these cases because previous work suggested that this
choice dominates either random-effects or pooled models.)

Discarded data from seedling plots with fewer than 10 total seedlings (3/10:
B, D, E).

> load("pine2.RData")

> totseedlings <- with(seedlings,tapply(count,plot,sum))

> seedlings2 <- droplevels(subset(seedlings,plot %in% levels(plot)[totseedlings>10]))

AIC (flipping axes to make model labels more readable):

3

AIC

C
or

re
la

tio
n

m
od

el
ExpN

Exp
RatioN

SpherN
LinN

GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

680 690 700 710 720 730

pow
:plot

pow
:plotxy

const:plot
const:plotxy

startval

● 30/0.001

● 5/0.001

● 30/0.1

● 5/0.1

● 100/0.001

● 100/0.1

method

● nlminb

optim

Scales:

range

C
or

re
la

tio
n

m
od

el

ExpN
Exp

RatioN
SpherN

LinN
GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10−3 10−2 10−1 100 101 102 103

pow
:plot

pow
:plotxy

const:plot
const:plotxy

startval

● 30/0.001

● 5/0.001

● 30/0.1

● 5/0.1

● 100/0.001

● 100/0.1

method

● nlminb

optim

Zoom in on pow:plot case (only showing best fits): AIC again . . .

spmodel

A
IC

677.2

677.4

677.6

677.8

678.0

678.2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Exp ExpN GausN LinN RatioN SpherN

startval

● 5/0.001

● 5/0.1

● 30/0.001

● 30/0.1

● 100/0.001

● 100/0.1

method

● nlminb

optim

4

and scale . . .

spmodel

ra
ng

e

101

101.5

102

102.5

103

● ●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

● ●

●

●

●

Exp ExpN GausN LinN RatioN SpherN

startval

● 5/0.001

● 5/0.1

● 30/0.001

● 30/0.1

● 100/0.001

● 100/0.1

method

● nlminb

optim

All the better models predict scale ≈ 5−−10m.
Now look at profiles:

logr

de
vi

an
ce

0

10

20

30

40

50

nlminb

0 1 2 3 4 5 6

optim

0 1 2 3 4 5 6

spmodel

ExpN

Exp

RatioN

SpherN

LinN

GausN

startval

30/0.001

5/0.001

30/0.1

5/0.1

100/0.001

100/0.1

Wacky! (While many of these are just terrible, the deviance minima are near
ln(2) and ln(4), or approx. 7.5 and 55 m. A lot of the variation has to do with
starting values (both range and nugget?) — and the exponential model without
nugget is very different (wants to make the range essentially zero), but its AIC
is quite bad.

Look at absolute curves instead:

5

logr

cd
ev

0

2

4

6

8

nlminb

0 1 2 3 4 5 6

optim

0 1 2 3 4 5 6

spmodel

ExpN

Exp

RatioN

SpherN

LinN

GausN

startval

30/0.001

5/0.001

30/0.1

5/0.1

100/0.001

100/0.1

Do I really believe this? Yes, I think so. Exponential plus nugget is about 0.4
AIC units worse in the AIC plots — and has the same complexity so it should
also be 0.4 deviance units worse (all the basic spatial correlation structures have
only a scale parameter — no shape parameters).

The linear and spherical models are the ones that are very poorly fit/depend
on starting conditions and optimizers/get stuck, although the Gaussian, ratio-
nal, and exponential are bad enough. The exponential actually covers most of
the range of the others, although the rational does a little better.

The envelope (dashed lines — 95% curvewise confidence limits of drawing
the exponential-nugget model parameters from their sampling distribution) also
shows that the spatial correlation is not very well-resolved from these data (sigh).
The rational, exponential, and Gaussian models are all well within this envelope.
The linear model (which doesn’t fit that much worse!) is quite different. Part
of the problem is that this envelope is based on the quadratic approximation to
the fit, which (as we will see in a minute) is not very good . . .

Confidence intervals on the range based on the quadratic approximation (a
little scary based on those profiles!) (Best model based on AIC: rational +
nugget)

> flatbatch <- gunlist(seedstuff$fullbatch)

> best1_seed <- flatbatch[[which.min(seedstuff$rframe$AIC)]]

> library(nlme)

> (cc <- intervals(best1_seed,which="var-cov")$corStruct["range",])

lower est. upper

2.801731 6.477717 14.976748

6

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d1

co
rv

al

The correlation between the range and the nugget parameter is not too high:

> cov2cor(best1_seed$apVar[1:2,1:2])

corStruct.range corStruct.nugget

corStruct.range 1.0000000 0.5828488

corStruct.nugget 0.5828488 1.0000000

(Need to figure how to get the profile confidence intervals more generally/robustly,
even for non-monotonic profiles . . . ? Brute force finding all minima and then
doing backsplines between them . . . ? ugh.)

3 Seedlings

> ## same for seedlings ...

> L2 <- load("pine_variog_batch_seedlings.RData")

7

AIC:

AIC

C
or

re
la

tio
n

m
od

el

ExpN
Exp

RatioN
SpherN

LinN
GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1150 1200 1250 1300 1350

pow
:plot

pow
:plotxy

const:plot
const:plotxy

startval

● 30/0.001

● 5/0.001

● 30/0.1

● 5/0.1

● 100/0.001

● 100/0.1

method

● nlminb

optim

(The pow:plotxy case clearly dominates, although we only get successful fits
for a couple of models (RatioN and ExpN).)

Scales:

range

C
or

re
la

tio
n

m
od

el

ExpN
Exp

RatioN
SpherN

LinN
GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

ExpN
Exp

RatioN
SpherN

LinN
GausN

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10−2 10−1 100 101 102 103

pow
:plot

pow
:plotxy

const:plot
const:plotxy

startval

● 30/0.001

● 5/0.001

● 30/0.1

● 5/0.1

● 100/0.001

● 100/0.1

method

● nlminb

optim

Zoom in on pow:plotxy:

> rr <- na.omit(seedlingstuff$rframe)

> head(rr[order(rr$AIC),])

spmodel startval method fixmod vpmod LL AIC range

132 GausN 5/0.1 optim plotxy pow -549.6254 1131.251 4.245212

105 RatioN 100/0.1 nlminb plotxy pow -550.5816 1133.163 3.277577

75 RatioN 30/0.001 nlminb plotxy pow -559.4696 1150.939 3.696222

91 ExpN 5/0.1 nlminb plotxy pow -561.5079 1155.016 2.411042

87 RatioN 30/0.1 nlminb plotxy pow -562.3732 1156.746 3.797978

25 ExpN 100/0.001 nlminb plot pow -636.9728 1289.946 41.171717

nugget bothmod

8

132 0.6870721 pow:plotxy

105 0.6931288 pow:plotxy

75 0.7122199 pow:plotxy

91 0.5386541 pow:plotxy

87 0.7085841 pow:plotxy

25 0.5118948 pow:plot

spmodel

A
IC

1135

1140

1145

1150

1155

●

●

●

●

ExpN Exp RatioN SpherN LinN GausN

startval

● 30/0.001

● 5/0.001

● 30/0.1

● 5/0.1

● 100/0.001

● 100/0.1

method

● nlminb

optim

> na.omit(rframe2)

spmodel startval method fixmod vpmod LL AIC range nugget

75 RatioN 30/0.001 nlminb plotxy pow -559.4696 1150.939 3.696222 0.7122199

87 RatioN 30/0.1 nlminb plotxy pow -562.3732 1156.746 3.797978 0.7085841

91 ExpN 5/0.1 nlminb plotxy pow -561.5079 1155.016 2.411042 0.5386541

105 RatioN 100/0.1 nlminb plotxy pow -550.5816 1133.163 3.277577 0.6931288

132 GausN 5/0.1 optim plotxy pow -549.6254 1131.251 4.245212 0.6870721

bothmod

75 pow:plotxy

87 pow:plotxy

91 pow:plotxy

105 pow:plotxy

132 pow:plotxy

9

spmodel

ra
ng

e

2.5

3.0

3.5

4.0

●

●

●

●

ExpN Exp RatioN SpherN LinN GausN

startval

● 30/0.001

● 5/0.001

● 30/0.1

● 5/0.1

● 100/0.001

● 100/0.1

method

● nlminb

optim

Now look at profiles (!!)

logr

de
vi

an
ce

0

10

20

30

40

50

nlminb

2.5 3.0 3.5 4.0

optim

2.5 3.0 3.5 4.0

spmodel

ExpN

RatioN

GausN

startval

30/0.001

30/0.1

5/0.1

100/0.1

These are TERRIBLE (although much better than before).
Working by hand, using rangeprof:

> ## 2 (varpower) x 2 (models?) x 2 (glsControl) x 6 (varstart)

> ##

> na.omit(rframe2)

> flatlist <- gunlist(seedlingstuff$fullbatch) ## collapse list to flat list

> w <- which.min(seedlingstuff$rframe[["AIC"]])

> f0 <- flatlist[[w]]

> save("f0",file="f0.RData")

> load("f0.RData")

> ## re-run profile:

> library(nlme)

> model <- f0

> cc2 <- model$modelStruct$corStruct

> attr(cc2,"fixed")

10

> ## attr(cc2,"fixed") <- c(TRUE,FALSE) ## allow nugget to adjust

> ## careful of distinction between the way that cc2 prints vs internal rep?

> ## cc2[1] <- cc2[1]

> attr(cc2,"fixed") <- TRUE

> update(model)

> options(error=recover)

> L <- update(model,correlation=cc2)

> if (inherits(L,"try-error")) NA else logLik(L)

> Lvals <- sapply(logr,Lfun)

> dvec <- -2*(Lvals-max(Lvals,na.rm=TRUE))

> rangeprof(f0,logr=seq(0,6.5,length.out=3))

> rangeprof(f0,logr=seq(4.245,6.5,length.out=2))

> totseedlings <- with(seedlings,tapply(count,plot,sum))

> seedlingplotmin <- 50

> seedlingplotmin <- 100

> seedlings2 <- gdata::drop.levels(subset(seedlings,plot %in% levels(plot)[totseedlings>seedlingplotmin]),reorder=FALSE)

> seedlings2 <- transform(seedlings2,sx0=scale(x0,center=TRUE,scale=40),sy0=scale(y0,center=TRUE,scale=40))

> ## scaled x-y fits actually seem to be WORSE?

> ## dropping more plots leads to singular fits

> g0 <- gls(correlation=corGaus(value=c(5/40,0.1),nugget=TRUE,form=~sx0+sy0|plot),

model=count~plot*(sx0+sy0),

dat=seedlings2,weights=varPower(),control=glsControl(opt="optim"))

> ## scaled (plotmin=50): max number of iterations reached without convergence

> ## scaled (plotmin=100): singular gls fit

> cc <- capture.output(g1 <- gls(correlation=corGaus(value=c(5,0.1),nugget=TRUE,form=~x0+y0|plot),

model=count~plot*(x0+y0),

dat=seedlings2,weights=varPower(),control=glsControl(opt="optim",optimMethod="Nelder-Mead",

maxIter=1000,msVerbose=FALSE),verbose=TRUE))

> ## unscaled (plotmin=50): OK (sort of)

> ## unscaled (plotmin=100): singular gls fit

> ## with Nelder-Mead:

� to simulate these kind of data, we probably want to use NB/Poisson statis-
tics to make the look right. if we generate a Gaussian random field with
correlation with the appropriate scale, then transform this to log-Normal
(exponentiate the values) with appropriate marginal variance, then take
Poisson deviates based on this (i.e. a logNormal-Poisson model, which
looks a lot like NB)

� then generate a logit-normal distribution (Gaussian field+logistic trans-
form) for establishment probability)

� filter it accordingly: pick binomial samples from each seed sample

� suppose that we’ve done this on a fairly fine grid: now sample that grid
by points, transects, etc... regular samples? point samples?

11

dd mean var range
seeds 12.77 95.39 6.48
seedlings 1.14 4.37 4.48

� for similitude, I’m constructing samples from several different plots, but
I’m not bothering to introduce variation in plots in mean density, nor
linear trends across the plots

� try several different scales, including extreme (white noise/global/long
range)

Need package RandomFields (for generating Gaussian random fields with
specified variogram/autocorrelation models).

Ideally, we want to generate simulated ‘data’ whose moments (spatial and
non-spatial) approximately match the data, so we can sanity-check, test power,
etc. etc.. It will be hard to match exactly, because the various non-linear/stochastic
filters that we will use don’t change the moments in easily computable/invertible
ways.

We will use the following model:

Z0 ∼ MVN(m,Σ0)

Seeds ∼ Poisson
(
eZ0

)
ZE ∼ MVN(p,ΣE)

Seedlings ∼ Binom(prob = logistic(ZE), N = Seeds)

(1)

The notation is ugly, but the basic idea is that the spatial bits of the model
will be generated as Gaussian random fields (because that’s what we know how
to do reasonably easily!) with (say) exponential+nugget spatial correlations and
specified ranges (e.g. parameters n0,r0, nE ,rE), and specified means (µ0, µE)
and variances (σ2

0 , σ2
E). What we want out at the end are random fields for

seeds and seedlings with

Mean: seeds 13, seedlings .08 [BMB: typo??]

Variance: seeds 95, seedlings 3

Scale: seeds 40, seedlings 54

I would say instead we need:
(the seedlings range is hacked, until I get farther with estimation).
Let’s first take the seed distribution. Let’s suppose that this is a lognormal-

Poisson distribution with mean µ, variance σ2; how do we relate these values to
the underlying m0, σ2

0 of the Gaussian field?
Two web sources quote the moments of the lognormal-Poisson distribution:

http://sci.tech-archive.net/Archive/sci.stat.math/2007-11/msg00004.

html (referring to the Encyclopedia of Statistical Sciences (2004, vol 9, p. 6198)

12

http://sci.tech-archive.net/Archive/sci.stat.math/2007-11/msg00004.html
http://sci.tech-archive.net/Archive/sci.stat.math/2007-11/msg00004.html

and the Dictionary and classified bibliography of statistical distributions in sci-
entific work (Patil et al 1984)), and Cameron and Trivedi (1998) [exercise 4.3:
referenced on Google Books] quote the mean as being the same as the lognormal
mean (exp(µ+ σ2/2)) and the variance as

exp(2µ+ 2σ2)− exp(2µ+ σ2) + exp(µ+ σ2/2) (2)

(for comparison, the LN variance is exp(2µ+σ2)(exp(σ2)−1) = exp(2µ+2σ2)−
exp(2µ+ σ2); so in fact the LN-P variance really is just (LN variance+Poisson
variance=LN variance + LN mean), as I would have expected . . . still may be
worth going through the calculation at some point, especially as it would help
with the next case.)

Check this numerically:

> mvfun <- function(m,s) {

c(exp(m+s^2/2),exp(2*m+2*s^2)+exp(m+s^2/2)-exp(2*m+s^2))

}

> mvfun(1.5,1)

[1] 7.389056 101.204065

> rr <- t(replicate(100,

{x <- rpois(1e5,rlnorm(1e5,meanlog=1.5,sdlog=1));

c(mean(x),var(x))}))

> summary(rr)

V1 V2

Min. :7.313 Min. : 94.64

1st Qu.:7.364 1st Qu.: 98.45

Median :7.388 Median :100.62

Mean :7.384 Mean :101.10

3rd Qu.:7.405 3rd Qu.:103.63

Max. :7.448 Max. :112.82

Call in a nonlinear equation-solver to invert the function, looking for µ, σ
that will produce a Poisson-lognormal mean and variance of 13 and 95:

> library(BB)

> objf <- function(p,target) {

mvfun(p[1],p[2])-target

}

> b1 <- BBsolve(c(1,1),objf,target=c(13,95))

Successful convergence.

> b1$par

[1] 2.367172 0.628931

13

> mvfun(b1$par[1],b1$par[2])

[1] 13 95

OK, that was easy! Of course, don’t know exactly what kind of nugget/range
this will give rise to, but for now let’s generate a random field with underlying
µ0 and σ2

0 based on these numbers — the Poisson randomness will add at least
some nugget . . .

> seeds_sim0 <- do_sim(m=b1$par[1],v=b1$par[2]^2,nugget=0,

range=coef(best1_seed$modelStruct$corStruct,unconstrained=FALSE)["range"])

Note that several updates of RandomFields are expected during 2011.

Please see help("changings") for important changes.

> ssvec <- c(seeds_sim0)

> print(c(summary(ssvec),sd=sd(ssvec),var=var(ssvec)),digits=3)

Min. 1st Qu. Median Mean 3rd Qu. Max. sd var

0.00 0.00 1.00 1.43 2.00 11.00 1.45 2.10

(Categories are for plotting . . .)

> seedcat <- cut(seeds_sim0,breaks=c(0,5,10,15,20,100,500),right=FALSE)

> scatmat <- matrix(as.numeric(seedcat),nrow=nrow(seeds_sim0))

For“environment”(i.e. the spatial distribution of seedling establishment/survival),
it’s going to be a little bit trickier. Starting from our existing seed distribution,
we need to end up with a mean density of seedlings as specified above. There-
fore, we want to do the same kind of calculation, but for a logit-normal-binomial
(sometimes called a logistic-normal-binomial) rather than a lognormal-Poisson
— and N is already a random variable! (V/M ratio increases from ≈ 7 to
≈ 30 between the seedling and seed distribution: CV from ≈ 1 to ≈ 17.) It
would be a nice exercise in math. stats. to compute the moments of a logit-
normal-binomial with known N , µ, σ, and then with N as a random variable,
but I think I’m just going to guess instead . . . (Some haphazard web searching
suggests that this may be hard. Aitchison and Shen (1980) suggest that the
moments of the logistic-normal itself are inconvenient (although they’re mostly
referring to the multivariate case, I don’t know how hard the univariate case is
. . .) — I could probably work out the moments of the logistic-normal-binomial
if I had those of the logistic-normal, but without them I’m probably screwed (or
saved, depending on how you look at it). Trial-and-error/hacking time . . .

I want the logistic-normal transformation to translate from a (lognormal-
Poisson) with the above moments (mean ≈ 13, var ≈ 95) to a distribution with
mean ≈ 1, var ≈ 4.

> mvfun <- function(s2m,s2sd,n=1e6,s1m=b1$par[1],s1sd=b1$par[2]) {

x <- rbinom(n,prob=plogis(rnorm(n,mean=s2m,sd=s2sd)),

14

size=rpois(n,rlnorm(n,meanlog=s1m,sdlog=s1sd)))

}

> x <- mvfun(s2m=-2,s2sd=1)

> c(mean(x),sd(x))

[1] 2.020107 2.815934

> tmpfun <- function(p,target=c(1,2)) {

x <- mvfun(s2m=p[1],s2sd=p[2])

mx <- mean(x); sdx <- sd(x)

r <- (mx-target[1])^2+(sdx-target[2])^2

cat(p,mx,sdx,r,"\n")

r

}

> tmpfun(c(-2,1))

-2 1 2.023803 2.817624 1.716681

[1] 1.716681

> optim(tmpfun,par=c(-2,1),control=list(maxit=20))

-2 1 2.020983 2.808017 1.695298

-1.8 1 2.338174 3.117819 3.040229

-2 1.2 2.198006 3.22923 2.946225

-2.2 1.2 1.900752 2.927364 1.671359

-2.4 1.3 1.729278 2.846986 1.249232

-2.4 1.1 1.565883 2.451383 0.52397

-2.6 1.05 1.302281 2.104147 0.1022204

-3 1.35 1.135963 2.177182 0.04987926

-3.5 1.525 0.874629 1.944771 0.01876817

-3.7 1.275 0.60337 1.347197 0.5834677

-3.375 1.28125 0.804219 1.655343 0.1571188

-2.725 1.29375 1.355206 2.402985 0.2885681

-3.2125 1.284375 0.917634 1.818606 0.0396878

-4.1125 1.759375 0.661663 1.768333 0.1681414

-2.978125 1.227344 1.066567 1.981047 0.004790396

-3.265625 1.467969 1.008069 2.105689 0.01123518

-3.252344 1.42207 0.981875 2.016839 0.0006120759

-2.730469 1.124414 1.222243 2.084584 0.05654636

-3.307617 1.424854 0.942646 1.964401 0.004556787

-3.581836 1.61958 0.881825 2.028613 0.01478405

-3.129053 1.325403 1.00965 1.97578 0.0006797288

$par

[1] -3.252344 1.422070

$value

[1] 0.0006120759

15

$counts

function gradient

21 NA

$convergence

[1] 1

$message

NULL

Things obviously bounce around quite a bit, but we should be reasonably
close.

> ## environment

> seedlings_sim <- do_sim(m=-3.5,v=1.5^2,nugget=0,

range=2,rfun=rbinom,invlink=plogis,

input=seeds_sim0,

retval="list")

> ss_env <- seedlings_sim$env

> seedlings_sim <- seedlings_sim$output

> ss2vec <- c(seedlings_sim)

> print(c(summary(ss2vec),sd=sd(ss2vec),var=var(ss2vec)),digits=3)

Min. 1st Qu. Median Mean 3rd Qu. Max. sd var

0.000 0.000 0.000 0.671 1.000 11.000 1.014 1.027

> seedlingcat <- cut(seedlings_sim,breaks=c(0,1,2,5,100),right=FALSE)

> seedlingcatmat <- matrix(as.numeric(seedlingcat),nrow=nrow(seedlings_sim))

> image(scatmat, col=gray((0:5)/5))

> contour(plogis(ss_env),add=TRUE,col=2,levels=c(0,0.05,0.1))

16

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

> image(seedlingcatmat, col=gray((0:4)/4))

17

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Now we can “sample” an appropriate number of points from these data sets,
and analyze them as we analyzed our real data (. . . I wonder how good/bad they
will look relative to the real data?) — we should, ideally, find that exponential
is best and that no linear trend is desired in either case.

> with(seeds,table(plot)) ## observations per plot, seeds

plot

A B C D E F G H J

7 15 9 4 17 12 7 17 19

18

> with(seeds,tapply(count,list(plot),sum)) ## total counts per plot, seeds

A B C D E F G H J

7 148 194 20 169 54 79 291 404

> with(seedlings2,table(plot)) ## observations per plot, seedlings

plot

A C F G H J K

75 75 74 75 75 75 75

> with(seedlings2,tapply(count,list(plot),sum)) ## total counts per plot, seedlings

A C F G H J K

32 181 38 80 57 27 182

> seedparms <- list(m=2.36,v=0.4,n=0,r=6.5,s=20,p=10)

> ## mean, var, nugget, ranges, samples/plot, plots

> sfun <- function(retval="sample",parms=seedparms) {

with(parms,

do_sim(m=m,v=v,nugget=n,range=r,

retval=retval,sample=s))

}

> seedsims_list <- replicate(seedparms$p,sfun(),simplify=FALSE)

> seedsims <- do.call(rbind,mapply(data.frame,

seedsims_list,

plot=as.list(LETTERS[seq_along(seedsims_list)]),

SIMPLIFY=FALSE))

> seedlingparms <- list(m=-3.5,v=1.5^2,n=0,r=2,s=75,p=10)

> seedlingsims_list <- replicate(seedlingparms$p,

with(seedlingparms,

do_sim(m=m,v=v,nugget=n,

range=r,rfun=rbinom,invlink=plogis,

retval="sample",sample=s,

input=sfun("grid"))),

simplify=FALSE)

> seedlingsims <- do.call(rbind,mapply(data.frame,

seedlingsims_list,

plot=as.list(LETTERS[seq_along(seedlingsims_list)]),

SIMPLIFY=FALSE))

19

x0

y0

10

20

30

40

50

10

20

30

40

50

10

20

30

40

50

A

E

I

10 20 30 40

B

F

J

10 20 30 40

C

G

10 20 30 40

D

H

10 20 30 40

empty

TRUE

FALSE

count

0

1

2

3

4

5

6

7

x0

y0

10

20

30

40

50

10

20

30

40

50

10

20

30

40

50

A

E

I

10 20 30 40 50

B

F

J

10 20 30 40 50

C

G

10 20 30 40 50

D

H

10 20 30 40 50

empty

TRUE

FALSE

count

0

1

2

3

4

5

6

7

20

References

Aitchison, J. and S. M. Shen (1980, August). Logistic-Normal distributions:
Some properties and uses. Biometrika 67 (2), 261–272.

Cameron, A. C. and P. K. Trivedi (1998). Regression analysis of count data.
Cambridge University Press.

21

	To do
	Seeds
	Seedlings

