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Summary

This chapter continues to review the math you need to fit models to data, mov-
ing forward from functions and curves to probability distributions. The first part
discusses ecological variability in general terms, then reviews basic probability
theory and some important applications, including Bayes’ Rule and its appli-
cation in statistics. The second part reviews how to analyze and understand
probability distributions. The third part provides a bestiary of probability dis-
tributions, finishing with a short digression on some ways to extend these basic
distributions.

1 Introduction: why does variability matter?

For many ecologists and statisticians, noise is just a nuisance — it gets in the
way of drawing conclusions from the data. The traditional statistical approach
to noise in data was to assume that all variation in the data was normally dis-
tributed, or transform the data until it was, and then use classical methods
based on the normal distribution to draw conclusions. Some scientists turned
to nonparametric statistics, which assume only that the shape of the data dis-
tribution is the same in all categories and provide tests of differences in the
means or “location parameters” among categories. Unfortunately, classical non-
parametric approaches make it much harder to draw quantitative conclusions
from data (rather than simply rejecting or failing to reject null hypotheses about
differences between groups).

In the 1980s, as they acquired better computing tools, ecologists began to
use more sophisticated models of variability such as generalized linear models
(see Chapter ??). Chapter ?? illustrated a wide range of deterministic functions
that correspond to eterministic models of the underlying ecological processes.
This chapter will illustrate a wide range of models for the stochastic part of the
dynamics. In these models, variability isn’t just a nuisance, but actually tells us
something about ecological processes. For example, census counts that follow a
negative binomial distribution (p. 22) tell us there is some form of environmental
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variation or aggregative response among individuals that we haven’t taken into
account (Shaw and Dobson, 1995).

Remember from Chapter ?? that what we treat as “signal” (deterministic)
and what we treat as “noise” (stochastic) depends on the question. The same
ecological variability, such as spatial variation in light, might be treated as
random variation by a forester interested in the net biomass increment of a forest
stand and as a deterministic driving factor by an ecophysiologist interested in
the photosynthetic response of individual plants.

Noise affects ecological data in two different ways — as measurement er-
ror and as process noise (this will become important in Chapter ?? when we
deal with dynamical models). Measurement error is the variability or “noise” in
our measurements, which makes it hard to estimate parameters and make in-
ferences about ecological systems. Measurement error leads to large confidence
intervals and low statistical power. Even if we can eliminate measurement error,
process noise or process error (often so-called even though it isn’t technically
an “error”, but a real part of the system) still exists. Variability affects any
ecological system. For example, we can observe thousands of individuals to de-
termine the average mortality rate with great accuracy. The fate of a group of
a few individuals, however, depends both on the variability in mortality rates
of individuals and on the demographic stochasticity that determines whether a
particular individual lives or dies (“loses the coin toss”). Even though we know
the average mortality rate perfectly, our predictions are still uncertain. Envi-
ronmental stochasticity — spatial and temporal variability in (e.g.) mortality
rate caused by variation in the environment rather than by the inherent ran-
domness of individual fates — also affects the dynamics. Finally, even if we
can minimize measurement error by careful measurement and minimize process
noise by studying a large population in a constant environment (i.e. low levels
of demographic and environmental stochasticity), ecological systems can still
amplify variability in surprising ways (Bjørnstad and Grenfell, 2001). For ex-
ample, a tiny bit of demographic stochasticity at the beginning of an epidemic
can trigger huge variation in epidemic dynamics (Rand and Wilson, 1991). Vari-
ability also feeds back to change the mean behavior of ecological systems. For
example, in the damselfish system described in Chapter ?? the number of re-
cruits in any given cohort is the number of settlers surviving density-dependent
mortality, but the average number of recruits is lower than expected from an
average-sized cohort of settlers because large cohorts suffer disproportionately
high mortality and contribute relatively little to the average. This widespread
phenomenon follows from Jensen’s inequality (Ruel and Ayres, 1999; Inouye,
2005).

2 Basic probability theory

In order to understand stochastic terms in ecological models, you’ll have to
(re)learn some basic probability theory. To define a probability, we first have
to identify the sample space, the set of all the possible outcomes that could

2



occur. Then the probability of an event A is the frequency with which that
event occurs. A few probability rules are all you need to know:

1. If two events are mutually exclusive (e.g., ”individual is male” and ”indi-
vidual is female”) then the probability that either occurs (the probability
of A or B, or Prob(A ∪ B)) is the sum of their individual probabilities:
e.g. Prob(male or female) = Prob(male) + Prob(female).

We use this rule, for example, in finding the probability that an outcome
is within a certain numeric range by adding up the probabilities of all the
different (mutually exclusive) values in the range: for a discrete variable,
for example, P (3 ≤ X ≤ 5) = P (X = 3) + P (X = 4) + P (X = 5).

2. If two events A and B are not mutually exclusive — the joint probability
that they occur together, Prob(A ∩ B), is greater than zero — then we
have to correct the rule for combining probabilities to account for double-
counting:

Prob(A ∪B) = Prob(A) + Prob(B)− Prob(A ∩B).

For example if we are tabulating the color and sex of animals, Prob(blue or male) =
Prob(blue) + Prob(male)− Prob(blue male))

3. The probabilities of all possible outcomes of an observation or experiment
add to 1.0. (Prob(male) + Prob(female) = 1.0.)

We will need this rule to understand the form of probability distributions,
which often contain a normalization constant to make sure that the sum
of the probabilities of all possible outcomes is 1.

4. The conditional probability of A given B, Prob(A|B), is the probability
that A happens if we know or assume B happens. The conditional prob-
ability equals

Prob(A|B) = Prob(A ∩B)/Prob(B). (1)

For example:

Prob(individual is blue|individual is male) =
Prob(individual is a blue male)

Prob(individual is male)
.

(2)
By contrast, we may also refer to the probability of A when we make no
assumptions about B as the unconditional probability of A. Prob(A) =
Prob(A|B) + Prob(A|not B).

Conditional probability is central to understanding Bayes’ Rule (p. 6).

5. If the conditional probability of A given B, Prob(A|B), equals the uncon-
ditional probability of A, then A is independent of B. Knowing about B
provides no information about the probability of A. Independence implies
that

Prob(A ∩B) = Prob(A)Prob(B), (3)
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which follows from multiplying both sides of (1) by Prob(B). The proba-
bilities of combinations of independent events are multiplicative.

Multiplying probabilities of independent events, or adding independent
log-probabilities (log(Prob(A ∩ B)) = log(Prob(A)) + log(Prob(B)) if A
and B are independent), is how we find the combined probability of a
series of observations.

We can immediately use these rules to think about the distribution of seeds
taken in the seed removal experiment (Chapter ??). The most obvious pattern
in the data is that there are many zeros, probably corresponding to times when
no predators visited the station. The sample space for seed disappearance —
is the number of seeds taken, from 0 to N (the number available). Suppose
that when a predator did visit the station, with probability v, it had an equal
probability of taking any of the possible number of seeds (a uniform distri-
bution from 0 to N). Since the probabilities must add to 1, this probability
(Prob(x taken|predator visits)) is 1/(N + 1) (0 to N represents N + 1 different
possible events). What is the unconditional probability of x seeds being taken?

If x > 0, then there is only one possible type of event — the predator visited
and took x seeds — with overall probability v/(N + 1) (Figure 1, left).

If x = 0, then there are two mutually exclusive possibilities. Either the
predator didn’t visit (probability 1 − v), or it visited (probability v) and took
zero seeds (probability 1/(N + 1)), so the overall probability is

(1− v)︸ ︷︷ ︸
didn’t visit

+

 v︸︷︷︸
visited

× 1
N + 1︸ ︷︷ ︸

took zero seeds

 = 1− v +
v

N + 1
. (4)

Now make things a little more complicated and suppose that when a predator
visits, it decides independently whether or not to take each seed. If the seeds
of a given species are all identical, so that each seed is taken with the same
probability p, then this process results in a binomial distribution. Using the
rules above, the probability of x seeds being taken when each has probability p
is px. It’s also true that N −x seeds are not taken, with probability (1−p)N−x.
Thus the probability is proportional to px ·(1−p)N−x. To get the probabilities of
all possible outcomes to add to 1, though, we have to multiply by a normalization
constant N !/(x!(N −x)!)∗, or

(
N
x

)
. (It’s too bad we can’t just ignore these ugly

normalization factors, which are always the least intuitive parts of probability
formulas, but we really need them in order to get the right answers. Unless you
are doing advanced calculations, however, you can usually just take the formulas
for the normalization constants for granted, without trying to puzzle out their
meaning.)

∗N ! means N · (N − 1) · . . . · 2 · 1, and is referred to as “N factorial”.
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Figure 1: Zero-inflated distributions. Left, zero-inflated uniform: right, zero-
inflated binomial. Number of seeds N = 5, probability of predator visit v = 0.7,
binomial probability of individual seed predation p = 0.4.

Now adding the “predator may or may not visit” layer to this formula, we
have a probability

(1− v)︸ ︷︷ ︸
didn’t visit

+

 v︸︷︷︸
visited

·Binom(0, p,N)︸ ︷︷ ︸
took zero seeds

 = (1− v) + v(1− p)N (5)

if x = 0 (
(
N
0

)
= 1, so the normalization constant disappears from the second

term), or

v︸︷︷︸
visited

·Binom(x, p, N)︸ ︷︷ ︸
took > 0 seeds

= v

(
N

x

)
px(1− p)N−x (6)

if x > 0 (Figure 1, right).
This distribution is called the zero-inflated binomial (Inouye, 1999; Tyre

et al., 2003). With only a few simple probability rules, we have derived a
potentially useful distribution that might describe the pattern of seed predation
better than any of the standard distributions we’ll see later in this chapter.

5



3 Bayes’ Rule

With the simple probability rules defined above we can also derive, and under-
stand, Bayes’ Rule. Most of the time we will use Bayes’ Rule to go from the
likelihood Prob(D|H), the probability of observing a particular set of data D
given that a hypothesis H is true (p. ??), to the information we really want,
Prob(H|D) — the probability of our hypothesis H in light of our data D. Bayes’
Rule is just a recipe for turning around a conditional probability:

P (H|D) =
P (D|H)P (H)

P (D)
. (7)

Bayes’ Rule is general — H and D can be any events, not just hypothesis
and data — but it’s easier to understand Bayes’ Rule when we have something
concrete to tie it to. Deriving Bayes’ Rule is almost as easy as remembering it.
Rule #4 on p. 3 applied to P (H|D) implies

P (D ∩H) = P (H|D)P (D), (8)

while applying it to P (D|H) tells us

P (H ∩D) = P (D|H)P (H). (9)

But P (H ∩D) = P (D ∩H) so

P (H|D)P (D) = P (D|H)P (H) (10)

and therefore

P (H|D) =
P (D|H)P (H)

P (D)
. (11)

Equation (11) says that the probability of the hypothesis given (in light
of) the data is equal to the probability of the data given the hypothesis (the
likelihood associated with H), times the probability of the hypothesis, divided
by the probability of the data. There are two problems here: we don’t know
the probability of the hypothesis, P (H) (isn’t that what we’re trying to figure
out in the first place?), and we don’t know the unconditional probability of the
data, P (D).

Let’s think about the second problem first—our ignorance of P (D). We can
calculate an unconditional probability for the data if we have a set of exhaustive,
mutually exclusive hypotheses: in other words, we assume that one, and only
one, of our hypotheses is true. Figure 2 shows a geometric interpretation of
Bayes’ Rule. The gray ellipse represents D, the set of all possibilities that could
lead to the observed data.

If one of the hypotheses must be true, then the unconditional probability of
observing the data is the sum of the probabilities of observing the data under
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Figure 2: Decomposition of the unconditional probability of the observed data
(D) into the sum of the probabilities of the intersection of the data with each
possible hypothesis (

∑N
j=1 D ∩Hj). The entire gray ellipse in the middle rep-

resents D. Each wedge (e.g. the hashed area H5) represents an alternative
hypothesis. The ellipse is divided into “pizza slices” (e.g. D ∩H5, hashed and
colored area). The area of each slice corresponds to D∩Hj , the joint probability
of the data D (ellipse) and the particular hypothesis Hj (wedge).
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any of the possible hypotheses, For N different hypotheses H1 to HN ,

P (D) =
N∑

j=1

P (D ∩Hj)

=
N∑

j=1

P (Hj)P (D|Hj). (12)

In words, the unconditional probability of the data is the sum of the likelihood
of each hypothesis (P (D|Hj)) times its unconditional probability (P (Hj)). In
Figure 2, summing the area of overlap of each of the large wedges (the hypotheses
Hj) with the gray ellipse (Hj ∩D) provides the area of the ellipse (D).

Substituting (12) into (11) gives the full form of Bayes’ Rule for a particular
hypothesis Hi when it is one of a mutually exclusive set of hypotheses {Hj}.
The probability of the truth of Hi in light of the data is

P (Hi|D) =
P (D|Hi)P (Hi)∑
j P (Hj)P (D|Hj)

(13)

In Figure 2, having observed the data D means we know that reality lies
somewhere in the gray ellipse. The probability that hypothesis 5 is true (i.e.,
that we are somewhere in the hashed area) is equal to the area of the hashed/-
colored “pizza slice” divided by the area of the ellipse. Bayes’ Rule breaks this
down further by supposing that we know how to calculate the likelihood of the
data for each hypothesis — the ratio of the pizza slice divided by the area of the
entire wedge (the area of the pizza slice [D ∩H5] divided by the hashed wedge
[H5]). Then we can recover the area of each slice by multiplying the likelihood
by the prior (the area of the wedge) and calculate both P (D) and P (H5|D).

Dealing with the second problem, our ignorance of the unconditional or prior
probability of the hypothesis P (Hi), is more difficult. In the next section we
will simply assume that we have other information about this probability, and
we’ll revisit the problem shortly in the context of Bayesian statistics. But first,
just to practice with Bayes’ Rule, we’ll explore two simpler examples that use
Bayes’ Rule to manipulate conditional probabilities.

3.1 False positives in medical testing

Suppose the unconditional probability of a random person sampled from the
population being infected (I) with some deadly but rare disease is one in a mil-
lion: P (I) = 10−6. There is a test for this disease that never gives a false nega-
tive result: if you have the disease, you will definitely test positive (P (+|I) = 1).
However, the test does occasionally give a false positive result. One person in
100 who doesn’t have the disease (is uninfected, U) will test positive anyway
(P (+|U) = 10−2). This sounds like a pretty good test. Let’s compute the
probability that someone who tests positive is actually infected.
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Replace H in Bayes’ rule with “is infected” (I) and D with “tests positive”
(+). Then

P (I|+) =
P (+|I)P (I)

P (+)
. (14)

We know P (+|I) = 1 and P (I) = 10−6, but we don’t know P (+), the un-
conditional probability of testing positive. Since you are either infected (I) or
uninfected (U), so these events are mutually exclusive,

P (+) = P (+ ∩ I) + P (+ ∩ U). (15)

Then
P (+) = P (+|I)P (I) + P (+|U)P (U) (16)

because P (I ∩+) = P (+|I)P (I) (eq. 1). We also know that P (U) = 1− P (I),
so

P (+) = P (+|I)P (I) + P (+|U)(1− P (I))

= 1× 10−6 + 10−2 × (1− 10−6)

= 10−6 + 10−2 + 10−8

≈ 10−2.

(17)

Since 10−6 is ten thousand times smaller than 10−2, and 10−8 is even tinier, we
can neglect them for now.

Now that we’ve done the hard work of computing the denominator, we can
put it together with the numerator:

P (I|+) =
P (+|I)P (I)

P (+)

≈ 1× 10−6

10−2

= 10−4

(18)

Even though false positives are unlikely, the chance that you are infected if you
test positive is still only 1 in 10,000! For a sensitive test (one that produces
few false negatives) for a rare disease, the probability that a positive test is
detecting a true infection is approximately P (I)/P (false positive), which can
be surprisingly small.

This false-positive issue also comes up in forensics cases (DNA testing, etc.).
Assuming that a positive test is significant is called the base rate fallacy. It’s im-
portant to think carefully about the sample population and the true probability
of being guilty (or at least having been present at the crime scene) conditional
on having your DNA match DNA found at the crime scene.

3.2 Bayes’ Rule and liana infestation

A student of mine used Bayes’ Rule as part of a simulation model of liana (vine)
dynamics in a tropical forest. He wanted to know the probability that a newly
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emerging sapling would be in a given “liana class” (L1=liana-free, L2–L3=light
to moderate infestation, L4=heavily infested with lianas). This probability de-
pends on the number of trees nearby that are already infested (N). We have
measurements of infestation of saplings from the field, and for each one we
know the number of nearby infestations. Thus if we calculate the fraction of
individuals in liana class Li with N nearby infested trees, we get an estimate of
Prob(N |Li). We also know the overall fractions in each liana class, Prob(Li).
When we add a new tree to the model, we know the neighborhood infestation
N from the model. Thus we can figure out what we want to know, Prob(Li|N),
by using Bayes’ Rule to calculate

Prob(Li|N) =
Prob(N |Li)Prob(Li)∑4

j=1 Prob(N |Lj)Prob(Lj)
. (19)

For example, suppose we find that a new tree in the model has 3 infested neigh-
bors. Let’s say that the probabilities of each liana class (1 to 4) having 3
infested neighbors are Prob(N |Li) = {0.05, 0.1, 0.3, 0.6} and that the uncondi-
tional probabilities of being in each liana class are Li = {0.5, 0.25, 0.2, 0.05}.
Then the probability that the new tree is heavily infested (i.e. is in class L4) is

0.6× 0.05
(0.05× 0.5) + (0.1× 0.25) + (0.3× 0.2) + (0.6× 0.05)

= 0.21. (20)

We would expect that a new tree with several infested neighbors has a much
higher probability of heavy infestation than the overall (unconditional) proba-
bility of 0.05. Bayes’ Rule allows us to quantify this guess.

3.3 Bayes’ Rule in Bayesian statistics

So what does Bayes’ Rule have to do with Bayesian statistics?
Bayesians translate likelihood into information about parameter values us-

ing Bayes’ Rule as given above. The problem is that we have the likelihood
L(data|hypothesis), the probability of observing the data given the model (pa-
rameters): what we want is Prob(hypothesis|data). After all, we already know
what the data are!

3.3.1 Priors

In the disease testing and the liana examples, we knew the overall, uncondi-
tional probability of disease or liana class in the population. When we’re doing
Bayesian statistics, however, we interpret P (Hi) instead as the prior probabil-
ity of a hypothesis, our belief about the probability of a particular hypothesis
before we see the data. Bayes’ Rule is the formula for updating the prior in
order to compute the posterior probability of each hypothesis, our belief about
the probability of the hypothesis after we see the data. Suppose I have two
hypotheses A and B and have observed some data D with likelihoods LA = 0.1
and LB = 0.2. In other words, the probability of D occurring if hypothesis A is
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true (P (D|A)) is 10%, while the probability of D occurring if hypothesis B is
true (P (D|B)) is 20%. If I assign the two hypotheses equal prior probabilities
(0.5 each), then Bayes’ Rule says the posterior probability of A is

P (A|D) =
0.1× 0.5

0.1× 0.5 + 0.2× 0.5
=

0.1
0.3

=
1
3

(21)

and the posterior probability of B is 2/3. However, if I had prior information
that said A was twice as probable (Prob(A) = 2/3, Prob(B) = 1/3) then the
probability of A given the data would be 0.5 (do the calculation). It is in
principle possible to get whatever answer you want, by rigging the prior: if you
assign B a prior probability of 0, then no data will ever convince you that B
is true (in which case you probably shouldn’t have done the experiment in the
first place). Frequentists claim that this possibility makes Bayesian statistics
open to cheating (Dennis, 1996): however, every Bayesian analysis must clearly
state the prior probabilities it uses. If you have good reason to believe that the
prior probabilities are not equal, from previous studies of the same or similar
systems, then arguably you should use that information rather than starting
as frequentists do from the ground up every time. (The frequentist-Bayesian
debate is one of the oldest and most virulent controversies in statistics (Ellison,
1996; Dennis, 1996): I can’t possibly do it justice here.)

However, it is a good idea to try so-called flat or weak or uninformative
priors — priors that assume you have little information about which hypothesis
is true — as a part of your analysis, even if you do have prior information
(Edwards, 1996). You may have noticed in the first example above that when
we set the prior probabilities equal, the posterior probabilities were just equal
to the likelihoods divided by the sum of the likelihoods. Algebraically if all the
P (Hi) are equal to the same constant C,

P (Hi|D) =
P (D|Hi)C∑
j P (D|Hj)C

=
Li∑
j Lj

(22)

where Li is the likelihood of hypothesis i.
You may think that setting all the priors equal would be an easy way to elim-

inate the subjective nature of Bayesian statistics and make everybody happy.
Two examples, however, will demonstrate that it’s not that easy to say what it
means to be completely “objective” or ignorant of the right hypothesis.

� partitioning hypotheses: suppose we find a nest missing eggs that might
have been taken by a raccoon, a squirrel, or a snake (only). The three
hypotheses “raccoon” (R), “squirrel” (Q), and “snake” (S) are our mu-
tually exclusive and exhaustive set of hypotheses for the identity of the
predator. If we have no other information (for example about the local
densities or activity levels of different predators), we might choose equal
prior probabilities for all three hypotheses. Since there are three mutually
exclusive predators, Prob(R) = Prob(Q) = Prob(S) = 1/3. Now a friend
comes and asks us whether we really believe that mammalian predators are
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Figure 3: The difficulty of defining an uninformative prior for discrete hypothe-
ses. Dark gray bars are priors that assume predation by each species is equally
likely; light gray bars divide predation by group first, then by species within
group.

twice as likely to eat the eggs as reptiles (Prob(R)+Prob(Q) = 2Prob(S))
(Figure 3). What do we do? We might solve this particular problem by
setting the probability for snakes (the only reptiles) to 0.5, the probabil-
ity for mammals (Prob(R ∪ Q)) to 0.5, and the probability for raccoons
and squirrels equal (Prob(R) = Prob(Q) = 0.25), but this simple example
suggests that such pitfalls are ubiquitous.

� changing scales: a similar problem arises with continuous variables. Sup-
pose we believe that the mass of a particular bird species is between 10 and
100 g, and that no particular value is any more likely than other: the prior
distribution is uniform, or flat. That is, the probability that the mass is
in some range of width ∆m is constant: Prob(mass = m) = 1/90∆m (so
that

∫ 100

10
Prob(m) dm = 1: see p. 15 for more on probability densities).

But is it sensible to assume that the probability that a species’ mass is
between 10 and 20 is the same as the probability that it is between 20 and
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Figure 4: The difficulty of defining an uninformative prior on continuous scales.
If we assume that the probabilities are uniform on one scale (linear or logarith-
mic), they must be non-uniform on the other.

30, or should it be the same as the probability that it is between 20 and 40
— that is, would it make more sense to think of the mass distribution on
a logarithmic scale? If we say that the probability distribution is uniform
on a logarithmic scale, then a species is less likely to be between 20 and
30 than it is to be between 10 and 20.∗ Since changing the scale is not
really changing anything about the world, just the way we describe it, this
change in the prior is another indication that it’s harder than we think
to say what it means to be ignorant. In any case, many Bayesians think
that researchers try too hard to pretend ignorance, and that one really
should use what is known about the system. Crome et al. (1996) compare
extremely different priors in a conservation context to show that their data
really are (or should be) informative to a wide spectrum of stakeholders,
regardless of their perspectives.

3.3.2 Integrating the denominator

The other challenge with Bayesian statistics, which is purely technical and does
not raise any deep conceptual issues, is the problem of adding up the denomi-

∗If the probability is uniform between a and b on the usual, linear scale (Prob(mass =
m) = 1/(b− a) dm), then on the log scale it is Prob(log mass = M) = 1/(b− a)eM dM [if we
change variables to log mass M , then dM = d(log m) = 1/m dm, so dm = m dM = eM dM ].
Going the other way, a log-uniform assumption gives Prob(mass = m) = 1/(log(b/a)m)dm
on the linear scale.
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nator
∑

j P (Hj)P (D|Hj) in Bayes’ rule. If the set of hypotheses (parameters)
is continuous, then the denominator is

∫
P (h)P (D|h) dh where h is a particular

parameter value.
For example, the binomial distribution says that the likelihood of obtaining 2

heads in 3 (independent, equal-probability) coin flips is
(
3
2

)
p2(1− p), a function

of p. The likelihood for p = 0.5 is therefore 0.375, but to get the posterior
probability we have to divide by the probability of getting 2 heads in 3 flips for
any value of p. Assuming a flat prior, the denominator is

∫ 1

0

(
3
2

)
p2(1 − p) dp =

0.25, so the posterior probability density of p = 0.5 is 0.375/0.25 = 1.5∗.
For the binomial case and other simple probability distributions, it’s easy

to sum or integrate the denominator either analytically or numerically. If we
only care about the relative probability of different hypotheses, we don’t need
to integrate the denominator because it has the same constant value for every
hypothesis.

Often, however, we do want to know the absolute probability. Calculating
the unconditional probability of the data (the denominator for Bayes’ Rule) can
be extremely difficult for more complicated problems. Much of current research
in Bayesian statistics focuses on ways to calculate the denominator. We will
revisit this problem in Chapters ?? and ??, first integrating the denominator
by brute-force numerical integration, then looking briefly at a sophisticated
technique for Bayesian analysis called Markov chain Monte Carlo.

3.4 Conjugate priors

Using so-called conjugate priors makes it easy to do the math for Bayesian analy-
sis. Imagine that we’re flipping coins (or measuring tadpole survival or counting
numbers of different morphs in a fixed sample) and that we use the binomial
distribution to model the data. For a binomial with a per-trial probability of
p and N trials, the probability of x successes is proportional (leaving out the
normalization constant) to px(1 − p)N−x. Suppose that instead of describing
the probability of x successes with a fixed per-trial probability p and number of
trials N we wanted to describe the probability of a given per-trial probability
p with fixed x and N . We would get Prob(p) proportional to px(1 − p)N−x

— exactly the same formula, but with a different proportionality constant and
a different interpretation. Instead of a discrete probability distribution over a
sample space of all possible numbers of successes (0 to N), now we have a contin-
uous probability distribution over all possible probabilities (all values between
0 and 1). The second distribution, for Prob(p), is called the Beta distribution
(p. 34) and it is the conjugate prior for the binomial distribution.

Mathematically, conjugate priors have the same structure as the probability
distribution of the data. They lead to a posterior distribution with the same
mathematical form as the prior, although with different parameter values. Intu-
itively, you get a conjugate prior by turning the likelihood around to ask about

∗This value is a probability density, not a probability, so it’s OK for it to be greater than
1: probability density will be explained on p. 15.
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the probability of a parameter instead of the probability of the data.
We’ll come back to conjugate priors and how to use them in Chapters ??

and ??.

4 Analyzing probability distributions

You need the same kinds of skills and intuitions about the characteristics of
probability distributions that we developed in Chapter ?? for mathematical
functions.

4.1 Definitions

Discrete A probability distribution is the set of probabilities on a sample
space or set of outcomes. Since this book is about modeling quantitative data,
we will always be dealing with sample spaces that are numbers — the number
or amount observed in some measurement of an ecological system. The simplest
distributions to understand are discrete distributions whose outcomes are a set
of integers: most of the discrete distributions we’ll deal with describe counting or
sampling processes and have ranges that include some or all of the non-negative
integers.

A discrete distribution is most easily described by its distribution function,
which is just a formula for the probability that the outcome of an experiment
or observation (called a random variable) X is equal to a particular value x
(f(x) = Prob(X = x)). A distribution can also be described by its cumulative
distribution function F (x) (note the uppercase F ), which is the probability that
the random variable X is less than or equal to a particular value x (F (x) =
Prob(X ≤ x). Cumulative distribution functions are most useful for frequentist
calculations of tail probabilities, e.g. the probability of getting n or more heads
in a series of coin-tossing experiments with a given trial probability.

Continuous A probability distribution over a continuous range (such as all
real numbers, or the non-negative real numbers) is called a continuous dis-
tribution. The cumulative distribution function of a continuous distribution
(F (x) = Prob(X ≤ x) is easy to define and understand — it’s just the probabil-
ity that the continuous random variable X is smaller than a particular value x
in any given observation or experiment — but the probability density function
(the analogue of the distribution function for a discrete distribution) is more
confusing, since the probability of any precise value is zero. You may imagine
that a measurement of (say) pH is exactly 7.9, but in fact what you have ob-
served is that the pH is between 7.82 and 7.98 — if your meter has a precision
of ± 1%. Thus continuous probability distributions are expressed as probability
densities rather than probabilities — the probability that random variable X
is between x and x + ∆x, divided by ∆x (Prob(7.82 < X < 7.98)/0.16, in this
case). Dividing by ∆x allows the observed probability density to have a well-
defined limit as precision increases and ∆x shrinks to zero. Unlike probabilities,
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Figure 5: Probability, probability density, and cumulative distributions. Top:
discrete (binomial: N = 5, p = 0.3) probability and cumulative probability
distributions. Bottom: continuous (exponential: λ = 1.5) probability density
and cumulative probability distributions.

Probability densities can be larger than 1 (Figure 5). For example, if the pH
probability distribution is uniform on the interval [7,7.1] but zero everywhere
else, its probability density is 10. In practice, we will mostly be concerned with
relative probabilities or likelihoods, and so the maximum density values and
whether they are greater than or less than 1 won’t matter much.

4.2 Means (expectations)

The first thing you usually want to know about a distribution is its average
value, also called its mean or expectation.

In general the expectation operation, denoted by E[·] (or a bar over a vari-
able, such as x̄) gives the “expected value” of a set of data, or a probability dis-
tribution, which in the simplest case is the same as its (arithmetic) mean value.
For a set of N data values written down separately as {x1, x2, x3, . . . xN}, the
formula for the mean is familiar:

E[x] =
∑N

i=1 xi

N
. (23)

Suppose we have the data tabulated instead, so that for each possible value
of x (for a discrete distribution) we have a count of the number of observations
(possibly zero, possibly more than 1), which we call c(x). Summing over all of
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the possible values of x, we have

E[x] =
∑N

i=1 xi

N
=

∑
c(x)x
N

=
∑ (

c(x)
N

)
x =

∑
Prob(x)x (24)

where Prob(x) is the discrete probability distribution representing this partic-
ular data set. More generally, you can think of Prob(x) as representing some
particular theoretical probability distribution which only approximately matches
any actual data set.

We can compute the mean of a continuous distribution as well. First, let’s
think about grouping (or “binning”) the values in a discrete distribution into
categories of size ∆x. Then if p(x), the density of counts in bin x, is c(x)/∆x, the
formula for the mean becomes

∑
p(x)·x∆x. If we have a continuous distribution

with ∆x very small, this becomes
∫

p(x)x dx. (This is in fact the definition of
an integral.) For example, an exponential distribution p(x) = λ exp(−λx) has
an expectation or mean value of

∫
λ exp(−λx)x dx = 1/λ. (You don’t need to

know how to do this integral analytically, although the R supplement will show
a little bit about numerical integration in R.)

4.3 Variances (expectation of X2)

The mean is the expectation of the random variable X itself, but we can also
ask about the expectation of functions of X. The first example is the expec-
tation of X2. We just fill in the value x2 for x in all of the formulas above:
E[x2] =

∑
Prob(x)x2 for a discrete distribution, or

∫
p(x)x2 dx for a continu-

ous distribution. (We are not asking for
∑

Prob(x2)x2.) The expectation of
x2 is a component of the variance, which is the expected value of (x − E[x])2

or (x− x̄)2, or the expected squared deviation around the mean. (We can also
show that

E[(x− x̄)2] = E[x2]− (x̄)2 (25)

by using the rules for expectations that (1) E[x + y] = E[x] + E[y] and (2) if
c is a constant, E[cx] = cE[x]. The right-hand formula formula is simpler to
compute than E[(x− x̄)2], but more subject to roundoff error.)

Variances are easy to work with because they are additive (we will show later
that Var(a + b) = Var(a) + Var(b) if a and b are uncorrelated), but harder to
compare with means since their units are the units of the mean squared. Thus
we often use instead the standard deviation of a distribution, (

√
Var), which has

the same units as X.
Two other summaries related to the variance are the variance-to-mean ratio

and the coefficient of variation (CV), which is the ratio of the standard deviation
to the mean. The variance-to-mean ratio has units equal to the mean; it is
primarily used to characterize discrete sampling distributions and compare them
to the Poisson distribution, which has a variance-to-mean ratio of 1. The CV
is more common, and is useful when you want to describe variation that is
proportional to the mean. For example, if you have a pH meter that is accurate
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to±10%, so that a true pH value of x will give measured values that are normally
distributed with 2σ = 0.1x∗, then σ = 0.05x and the CV is 0.05.

4.4 Higher moments

The expectation of (x−E[x])3 tells you the skewness of a distribution or a data
set, which indicates whether it is asymmetric around its mean. The expectation
E[(x−E[x])4] measures the kurtosis, the “pointiness” or “flatness”, of a distribu-
tion. These are called the third and fourth central moments of the distribution.
In general, the nth moment is E[xn], and the nth central moment is E[(x− x̄)n];
the mean is the first moment, and the variance is the second central moment.
We won’t be too concerned with these summaries (of data or distributions), but
they do come up sometimes.

4.5 Median and mode

The median and mode are two final properties of probability distributions that
are not related to moments. The median of a distribution is the point which
divides the area of the probability density in half, or the point at which the
cumulative distribution function is equal to 0.5. It is often useful for describing
data, since it is robust — outliers change its value less than they change the
mean — but for many distributions it’s more complicated to compute than the
mean. The mode is the “most likely value”, the maximum of the probability
distribution or density function. For symmetric distributions the mean, mode,
and median are all equal; for right-skewed distributions, in general mode <
median < mean.

4.6 The method of moments

Suppose you know the theoretical values of the moments (e.g. mean and vari-
ance) of a distribution and have calculated the sample values of the moments
(by calculating x̄ =

∑
x/N and s2 =

∑
(x−x̄)2/N : don’t worry for the moment

about whether the denominator in the sample variance should be N or N − 1).
Then there is a simple way to estimate the parameters of a distribution, called
the method of moments: just match the sample values up with the theoretical
values. For the normal distribution, where the parameters of the distribution
are just the mean and the variance, this is trivially simple: µ = x̄, σ2 = s2. For a
distribution like the negative binomial, however (p. 22), it involves a little bit of
algebra. The negative binomial has parameters µ (equal to the mean, so that’s
easy) and k; the theoretical variance is σ2 = µ(1 + µ/k). Therefore, setting
µ = x̄, s2 ≈ µ(1 + µ/k), and solving for k, we calculate the method-of-moments

∗Remember that the 95% confidence limits of the normal distribution are approximately
µ± 2σ.
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estimate of k:

σ2 = µ(1 + µ/k)

s2 ≈ x̄(1 + x̄/k)

s2

x̄
− 1 ≈ x̄

k

k ≈ x̄

s2/x̄− 1

(26)

The method of moments is very simple but is biased in many cases; it’s
a good way to get a first estimate of the parameters of a distribution, but
for serious work you should follow it up with a maximum likelihood estimator
(Chapter ??).

5 Bestiary of distributions

The rest of the chapter presents brief introductions to a variety of useful prob-
ability distributions, including the mechanisms behind them and some of their
basic properties. Like the bestiary in Chapter ??, you can skim this bestiary
on the first reading. The appendix of Gelman et al. (1996) contains a useful
table, more abbreviated than these descriptions but covering a wider range of
functions. The book by Evans et al. (2000) is also useful.

5.1 Discrete models

5.1.1 Binomial

The binomial is probably the easiest distribution to understand. It applies when
you have samples with a fixed number of subsamples or “trials” in each one,
and each trial can have one of two values (black/white, heads/tails, alive/dead,
species A/species B), and the probability of“success”(black, heads, alive, species
A) is the same in every trial. If you flip a coin 10 times (N = 10) and the
probability of a head in each coin flip is p = 0.7 then the probability of getting 7
heads (k = 7) will will have a binomial distribution with parameters N = 10 and
p = 0.7∗ Don’t confuse the trials (subsamples), and the probability of success
in each trial, with the number of samples and the probabilities of the number
of successful trials in each sample. In the seed predation example, a trial is an
individual seed and the trial probability is the probability that an individual seed
is taken, while a sample is the observation of a particular station at a particular
time and the binomial probabilities are the probabilities that a certain total
number of seeds disappears from the station. You can derive the part of the

∗Gelman and Nolan (2002) point out that it is not physically possible to construct a coin
that is biased when flipped — although a spinning coin can be biased. Diaconis et al. (2004)
even tested a coin made of balsa wood on one side and lead on the other to establish that it
was unbiased.
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distribution that depends on x, px(1−p)N−x, by multiplying the probabilities of
x independent successes with probability p and N −x independent failures with
probability 1− p. The rest of the distribution function,

(
N
x

)
= N !/(x!(N − x)!),

is a normalization constant that we can justify either with a combinatorial
argument about the number of different ways of sampling x objects out of a
set of N (Appendix), or simply by saying that we need a factor in front of the
formula to make sure the probabilities add up to 1.

The variance of the binomial is Np(1 − p). Like most discrete sampling
distributions (e.g. the binomial, Poisson, negative binomial), this variance de-
pends on the number of samples per trial N . When the number of samples
per trial increases the variance also increases, but the coefficient of variation
(
√

Np(1− p)/(Np) =
√

(1− p)/(Np)) decreases. The dependence on p(1 − p)
means the binomial variance is small when p is close to 0 or 1 (and therefore the
values are scrunched up near 0 or N), and largest when p = 0.5. The coefficient
of variation, on the other hand, is largest for small p.

When N is large and p isn’t too close to 0 or 1 (i.e. when Np is large), then
the binomial distribution is approximately normal (Figure 17).

A binomial distribution with only one trial (N = 1) is called a Bernoulli
trial.

You should only use the binomial in fitting data when there is an upper limit
to the number of possible successes. When N is large and p is small, so that the
probability of getting N successes is small, the binomial approaches the Poisson
distribution, which is covered in the next section (Figure 17).

Examples: number of surviving individuals/nests out of an initial sample;
number of infested/infected animals, fruits, etc. in a sample; number of a par-
ticular class (haplotype, subspecies, etc.) in a larger population.

Summary:
range discrete, 0 ≤ x ≤ N

distribution
(
N
x

)
px(1− p)N−x

R dbinom, pbinom, qbinom, rbinom
parameters p [real, 0–1], probability of success [prob]

N [positive integer], number of trials [size]
mean Np
variance Np(1− p)
CV

√
(1− p)/(Np)

Conjugate prior Beta

5.1.2 Poisson

The Poisson distribution gives the distribution of the number of individuals,
arrivals, events, counts, etc., in a given time/space/unit of counting effort if
each event is independent of all the others. The most common definition of the
Poisson has only one parameter, the average density or arrival rate, λ, which
equals the expected number of counts in a sampling unit. An alternative pa-
rameterization gives a density per unit sampling effort and then specifies the
mean as the product of the density per sampling effort r times the sampling
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effort t, λ = rt. This parameterization emphasizes that even when the popula-
tion density is constant, you can change the Poisson distribution of counts by
sampling more extensively — for longer times or over larger quadrats.

The Poisson distribution has no upper limit, although values much larger
than the mean value are highly improbable. This characteristic provides a rule
for choosing between the binomial and Poisson. If you expect to observe a
“ceiling”on the number of counts, you should use the binomial; if you expect the
number of counts to be effectively unlimited, even if it is theoretically bounded
(e.g. there can’t really be an infinite number of plants in your sampling quadrat),
use the Poisson.

The variance of the Poisson is equal to its mean. However, the coefficient
of variation (CV=standard deviation/mean) decreases as the mean increases,
so in that sense the Poisson distribution becomes more regular as the expected
number of counts increases. The Poisson distribution only makes sense for
count data. Since the CV is unitless, it should not depend on the units we use
to express the data; since the CV of the Poisson is 1/

√
mean, that means that if

we used a Poisson distribution to describe data on measured lengths, we could
reduce the CV by a factor of 10 by changing from meters to centimeters (which
would be silly).

For λ < 1 the Poisson’s mode is at zero. When the expected number of
counts gets large (e.g. λ > 10) the Poisson becomes approximately normal
(Figure 17).

Examples: number of seeds/seedlings falling in a gap; number of offspring
produced in a season (although this might be better fit by a binomial if the
number of breeding attempts is fixed); number of prey caught per unit time.

Summary:
range discrete (0 ≤ x)
distribution e−λλn

n!

or e−rt(rt)n

n!
R dpois, ppois, qpois, rpois
parameters λ (real, positive), expected number per sample [lambda]

or r (real, positive), expected number per unit effort, area, time, etc. (arrival rate)
mean λ (or rt)
variance λ (or rt)
CV 1/

√
λ (or 1/

√
rt)

Conjugate prior Gamma

5.1.3 Negative binomial

Most probability books derive the negative binomial distribution from a series of
independent binary (heads/tails, black/white, male/female, yes/no) trials that
all have the same probability of success, like the binomial distribution. Rather
than count the number of successes obtained in a fixed number of trials, which
would result in a binomial distribution, the negative binomial counts the number
of failures before a predetermined number of successes occurs.
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This failure-process parameterization is only occasionally useful in ecologi-
cal modeling. Ecologists use the negative binomial because it is discrete, like
the Poisson, but its variance can be larger than its mean (i.e. it can be overdis-
persed). Thus, it’s a good phenomenological description of a patchy or clustered
distribution with no intrinsic upper limit that has more variance than the Pois-
son.

The “ecological” parameterization of the negative binomial replaces the pa-
rameters p (probability of success per trial: prob in R) and n (number of suc-
cesses before you stop counting failures: size in R) with µ = n(1 − p)/p, the
mean number of failures expected (or of counts in a sample: mu in R), and k,
which is typically called an overdispersion parameter. Confusingly, k is also
called size in R, because it is mathematically equivalent to n in the failure-
process parameterization.

The overdispersion parameter measures the amount of clustering, or aggre-
gation, or heterogeneity, in the data: a smaller k means more heterogeneity.
The variance of the negative binomial distribution is µ + µ2/k, and so as k be-
comes large the variance approaches the mean and the distribution approaches
the Poisson distribution. For k > 10, the negative binomial is hard to tell from
a Poisson distribution, but k is often less than 1 in ecological applications∗.

Specifically, you can get a negative binomial distribution as the result of a
Poisson sampling process where the rate λ itself varies. If the distribution of
λ is a gamma distribution (p. 32) with shape parameter k and mean µ, and
x is Poisson-distributed with mean λ, then the distribution of x be a nega-
tive binomial distribution with mean µ and overdispersion parameter k (May,
1978; Hilborn and Mangel, 1997). In this case, the negative binomial reflects
unmeasured (“random”) variability in the population.

Negative binomial distributions can also result from a homogeneous birth-
death process, births and deaths (and immigrations) occurring at random in
continuous time. Samples from a population that starts from 0 at time t = 0,
with immigration rate i, birth rate b, and death rate d will be negative binomially
distributed with parameters µ = i/(b−d)(e(b−d)t−1) and k = i/b (Bailey, 1964,
p. 99).

Several different ecological processes can often generate the same probabil-
ity distribution. We can usually reason forward from knowledge of probable
mechanisms operating in the field to plausible distributions for modeling data,
but this many-to-one relationship suggests that it is unsafe to reason backwards
from probability distributions to particular mechanisms that generate them.

Examples: essentially the same as the Poisson distribution, but allowing for
heterogeneity. Numbers of individuals per patch; distributions of numbers of
parasites within individual hosts; number of seedlings in a gap, or per unit area,
or per seed trap.

∗Beware of the word“overdispersion”, which is sometimes used with an opposite meaning in
spatial statistics, where it can mean“more regular than expected from a random distribution of
points”. If you took quadrat samples from such an“overdispersed”population, the distribution
of counts would have variance less than the mean and be “underdispersed” in the probability
distribution sense (Brown and Bolker, 2004) (!)
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Summary:
range discrete, x ≥ 0
distribution (n+x−1)!

(n−1!)x! pn(1− p)x

or Γ(k+x)
Γ(k)x! (k/(k + µ))k(µ/(k + µ))x

R dnbinom, pnbinom, qnbinom, rnbinom
parameters p (0 < p < 1) probability per trial [prob]

or µ (real, positive) expected number of counts [mu]
n (positive integer) number of successes awaited [size]
or k (real, positive), overdispersion parameter [size]

(= shape parameter of underlying heterogeneity)
mean µ = n(1− p)/p
variance µ + µ2/k = n(1− p)/p2

CV
√

(1+µ/k)
µ = 1/

√
n(1− p)

Conjugate prior No simple conjugate prior (Bradlow et al., 2002)
R’s default coin-flipping (n =size, p =prob) parameterization. In order to

use the “ecological” (µ =mu, k =size) parameterization, you must name the mu
parameter explicitly (e.g. dnbinom(5,size=0.6,mu=1)).

5.1.4 Geometric

The geometric distribution is the number of trials (with a constant probability of
failure) until you get a single failure: it’s a special case of the negative binomial,
with k or n = 1.

Examples: number of successful/survived breeding seasons for a seasonally
reproducing organism. Lifespans measured in discrete units.

Summary:
range discrete, x ≥ 0
distribution p(1− p)x

R dgeom, pgeom, qgeom, rgeom
parameters p (0 < p < 1) probability of “success” (death) [prob]
mean 1/p− 1
variance (1− p)/p2

CV 1/
√

1/(1− p)

5.1.5 Beta-binomial

Just as one can compound the Poisson distribution with a Gamma to allow
for heterogeneity in rates, producing a negative binomial, one can compound
the binomial distribution with a Beta distribution to allow for heterogeneity in
per-trial probability, producing a Beta-binomial distribution (Crowder, 1978;
Reeve and Murdoch, 1985; Hatfield et al., 1996). The most common parameter-
ization of the beta-binomial distribution uses the binomial parameter N (trials
per sample), plus two additional parameters a and b that describe the beta
distribution of the per-trial probability. When a = b = 1 the per-trial proba-
bility is equally likely to be any value between 0 and 1 (the mean is 0.5), and
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27



the beta-binomial gives a uniform (discrete) distribution between 0 and N . As
a + b increases, the variance of the underlying heterogeneity decreases and the
beta-binomial converges to the binomial distribution. Morris (1997) suggests a
different parameterization that uses an overdispersion parameter θ, like the k
parameter of the negative binomial distribution. In this case the parameters are
N , the per-trial probability p (= a/(a + b)), and θ (= a + b). When θ is large
(small overdispersion), the beta-binomial becomes binomial. When θ is near
zero (large overdispersion), the beta-binomial becomes U-shaped (Figure 10).

Summary:
range discrete, 0 ≤ x ≤ N
R dbetabinom, rbetabinom [emdbook package]

(pbetabinom and qbetabinom are missing)
density Γ(θ)

Γ(pθ)Γ((1−p)θ) ·
N !

x!(N−x)! ·
Γ(x+pθ)Γ(N−x+(1−p)θ)

Γ(N+θ)

parameters p (real, positive), probability: average per-trial probability [prob]
θ (real, positive), overdispersion parameter [theta]
or a and b (shape parameters of Beta distribution for per-trial probability)
[shape1 and shape2]
a = θp, b = θ(1− p)

mean Np

variance Np(1− p)
(
1 + N−1

θ+1

)
CV

√
(1−p)

Np

(
1 + N−1

θ+1

)
Examples: as for the binomial.

5.2 Continuous distributions

5.2.1 Uniform distribution

The uniform distribution with limits a and b, denoted U(a, b), has a constant
probability density of 1/(b − a) for a ≤ x ≤ b and zero probability elsewhere.
The standard uniform, U(0, 1), is very commonly used as a building block for
other distributions, but is surprisingly rarely used in ecology otherwise.

Summary:
range a ≤ x ≤ b
distribution 1/(b− a)
R dunif, punif, qunif, runif
parameters minimum (a) and maximum (b) limits (real) [min, max]
mean (a + b)/2
variance (b− a)2/12
CV (b− a)/((a + b)

√
3)

5.2.2 Normal distribution

Normally distributed variables are everywhere, and most classical statistical
methods use this distribution. The explanation for the normal distribution’s
ubiquity is the Central Limit Theorem, which says that if you add a large number
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of independent samples from the same distribution the distribution of the sum
will be approximately normal. “Large”, for practical purposes, can mean as few
as 5. The central limit theorem does not mean that “all samples with large
numbers are normal”. One obvious counterexample is two different populations
with different means that are lumped together, leading to a distribution with
two peaks (p. 40). Also, adding isn’t the only way to combine samples: if you
multiply independent samples from the same distribution, you get a log-normal
distribution instead of a normal distribution (p. 37).

Many distributions (binomial, Poisson, negative binomial, gamma) become
approximately normal in some limit (Figure 17). You can usually think about
this as some form of “adding lots of things together”.

The normal distribution specifies the mean and variance separately, with
two parameters, which means that one often assumes constant variance (as the
mean changes), in contrast to the Poisson and binomial distribution where the
variance is a fixed function of the mean.

Examples: practically everything.
Summary:
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range all real values
distribution 1√

2πσ
exp

(
− (x−µ)2

2σ2

)
R dnorm, pnorm, qnorm, rnorm
parameters µ (real), mean [mean]

σ (real, positive), standard deviation [sd]
mean µ
variance σ2

CV σ/µ
Conjugate prior Normal (µ); Gamma (1/σ2)

5.2.3 Gamma

The Gamma distribution is the distribution of waiting times until a certain
number of events take place. For example, Gamma(shape = 3, scale = 2) is the
distribution of the length of time (in days) you’d expect to have to wait for 3
deaths in a population, given that the average survival time is 2 days (mortality
rate is 1/2 per day). The mean waiting time is 6 days=(3 deaths/(1/2 death
per day)). (While the gamma function (gamma in R: see Appendix) is usually
written with a capital Greek gamma, Γ, the Gamma distribution (dgamma in R)
is written out as Gamma.) Gamma distributions with integer shape parameters
are also called Erlang distributions. The Gamma distribution is still defined for
non-integer (positive) shape parameters, but the simple description given above
breaks down: how can you define the waiting time until 3.2 events take place?

For shape parameters ≤ 1, the Gamma has its mode at zero; for shape
parameter = 1, the Gamma is equivalent to the exponential (see below). For
shape parameter greater than 1, the Gamma has a peak (mode) at a value
greater than zero; as the shape parameter increases, the Gamma distribution
becomes more symmetrical and approaches the normal distribution. This be-
havior makes sense if you think of the Gamma as the distribution of the sum of
independent, identically distributed waiting times, in which case it is governed
by the Central Limit Theorem.

The scale parameter (sometimes defined in terms of a rate parameter instead,
1/scale) just adjusts the mean of the Gamma by adjusting the waiting time per
event; however, multiplying the waiting time by a constant to adjust its mean
also changes the variance, so both the variance and the mean depend on the
scale parameter.

The Gamma distribution is less familiar than the normal, and new users of
the Gamma often find it annoying that in the standard parameterization you
can’t adjust the mean independently of the variance. You could define a new set
of parameters m (mean) and v (variance), with scale = v/m and shape = m2/v
— but then you would find (unlike the normal distribution) the shape changing
as you changed the variance. Nevertheless, the Gamma is extremely useful;
it solves the problem that many researchers face when they have a continuous
variable with “too much variance”, whose coefficient of variation is greater than
about 0.5. Modeling such data with a normal distribution leads to unrealistic
negative values, which then have to be dealt with in some ad hoc way like
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Figure 13: Gamma distribution

truncating them or otherwise trying to ignore them. The Gamma is often a
more realistic alternative.

The Gamma is the continuous counterpart of the negative binomial, which
is the discrete distribution of a number of trials (rather than length of time)
until a certain number of events occur. Both the negative binomial and Gamma
distributions are often generalized, however, in ways that don’t necessarily make
sense according to their simple mechanistic descriptions (e.g. a Gamma distri-
bution with a shape parameter of 2.3 corresponds to the distribution of waiting
times until 2.3 events occur . . . ).

The Gamma and negative binomial are both commonly used phenomenologi-
cally, as skewed or overdispersed versions of the Poisson or normal distributions,
rather than for their mechanistic descriptions. The Gamma is less widely used
than the negative binomial because the negative binomial replaces the Poisson,
which is restricted to a particular variance, while the Gamma replaces the nor-
mal, which can have any variance. Thus you might use the negative binomial
for any discrete distribution with variance > mean, while you wouldn’t need
a Gamma distribution unless the distribution you were trying to match was
skewed to the right.

Summary:
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range positive real values
R dgamma, pgamma, qgamma, rgamma
distribution 1

saΓ(a)x
a−1e−x/s

parameters s (real, positive), scale: length per event [scale]
or r (real, positive), rate = 1/s; rate at which events occur [rate]
a (real, positive), shape: number of events [shape]

mean as or a/r
variance as2 or a/r2

CV 1/
√

a
Examples: almost any environmental variable with a large variance where

negative values don’t make sense: nitrogen concentrations, light intensity, etc..

5.2.4 Exponential

The exponential distribution (Figure 14) describes the distribution of waiting
times for a single event to happen, given that there is a constant probability per
unit time that it will happen. It is the continuous counterpart of the geometric
distribution and a special case (for shape parameter=1) of the Gamma distri-
bution. It can be useful both mechanistically, as a distribution of inter-event
times or lifetimes, or phenomenologically, for any continuous distribution that
has highest probability for zero or small values.

Examples: times between events (bird sightings, rainfall, etc.); lifespans/-
survival times; random samples of anything that decreases exponentially (e.g.
light levels in a forest canopy).

Summary:
range positive real values
R dexp, pexp, qexp, rexp
density λe−λx

parameters λ (real, positive), rate: death/disappearance rate [rate]
mean 1/λ
variance 1/λ2

CV 1

5.2.5 Beta

The beta distribution, a continuous distribution closely related to the binomial
distribution, completes our basic family of continuous distributions (Figure 17).
The beta distribution is the only standard continuous distribution (besides the
uniform distribution) with a finite range, from 0 to 1. The beta distribution
is the inferred distribution of the probability of success in a binomial trial with
a−1 observed successes and b−1 observed failures. When a = b the distribution
is symmetric around x = 0.5, when a < b the peak shifts toward zero, and when
a > b it shifts toward 1. With a = b = 1, the distribution is U(0, 1). As a + b
(equivalent to the total number of trials+2) gets larger, the distribution becomes
more peaked. For a or b less than 1, the mechanistic description stops making
sense (how can you have fewer than zero trials?), but the distribution is still

34



2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

Value

P
ro

ba
bi

lit
y 

de
ns

ity

λλ == 1

λλ == 1 2
λλ == 1 5

Figure 14: Exponential distribution.
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Figure 15: Beta distribution

well-defined, and when a and b are both between 0 and 1 it becomes U-shaped
— it has peaks at p = 0 and p = 1.

The beta distribution is obviously good for modeling probabilities or propor-
tions. It can also be useful for modeling continuous distributions with peaks at
both ends, although in some cases a finite mixture model (p. 40) may be more
appropriate. The beta distribution is also useful whenever you have to define
a continuous distribution on a finite range, as it is the only such standard con-
tinuous distribution. It’s easy to rescale the distribution so that it applies over
some other finite range instead of from 0 to 1: for example, Tiwari et al. (2005)
used the beta distribution to describe the distribution of turtles on a beach, so
the range would extend from 0 to the length of the beach.

Summary:
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range real, 0 to 1
R dbeta, pbeta, qbeta, rbeta
density Γ(a+b)

Γ(a)Γ(b)x
a−1(1− x)b−1

parameters a (real, positive), shape 1: number of successes +1 [shape1]
b (real, positive), shape 2: number of failures +1 [shape2]

mean a/(a + b)
mode (a− 1)/(a + b− 2)
variance ab/((a + b)2)(a + b + 1)
CV

√
(b/a)/(a + b + 1)

5.2.6 Lognormal

The lognormal falls outside the neat classification scheme we’ve been building
so far; it is not the continuous analogue or limit of some discrete sampling distri-
bution (Figure 17)∗. Its mechanistic justification is like the normal distribution
(the Central Limit Theorem), but for the product of many independent, identi-
cal variates rather than their sum. Just as taking logarithms converts products
into sums, taking the logarithm of a lognormally distributed variable—which
might result from the product of independent variables—converts it it into a
normally distributed variable resulting from the sum of the logarithms of those
independent variables. The best example of this mechanism is the distribution
of the sizes of individuals or populations that grow exponentially, with a per
capita growth rate that varies randomly over time. At each time step (daily,
yearly, etc.), the current size is multiplied by the randomly chosen growth in-
crement, so the final size (when measured) is the product of the initial size and
all of the random growth increments.

One potentially puzzling aspect of the lognormal distribution is that its mean
is not what you might naively expect if you exponentiate a normal distribution
with mean µ (i.e. eµ). Because of Jensen’s inequality, and because the exponen-
tial function is an accelerating function, the mean of the lognormal, eµ+σ2/2, is
greater than eµ by an amount that depends on the variance of the original nor-
mal distribution. When the variance is small relative to the mean, the mean is
approximately equal to eµ, and the lognormal itself looks approximately normal
(e.g. solid lines in Figure 16, with σ(log) = 0.2). As with the Gamma distri-
bution, the distribution also changes shape as the variance increases, becoming
more skewed.

The log-normal is also used phenomenologically in some of the same situa-
tions where a Gamma distribution also fits: continuous, positive distributions
with long tails or variance much greater than the mean (McGill et al., 2006).
Like the distinction between a Michaelis-Menten and a saturating exponential,

∗The lognormal extends our table in another direction — exponential transformation of a
known distribution. Other distributions have this property, most notably the extreme value
distribution, which is the log-exponential: if Y is exponentially distributed, then log Y is
extreme-value distributed. As its name suggests, the extreme value distribution occurs mech-
anistically as the distribution of extreme values (e.g. maxima) of samples of other distributions
(Katz et al., 2005).
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Figure 16: Lognormal distribution

you may not be able to tell the difference between a lognormal and a Gamma
without large amounts of data. Use the one that is more convenient, or that
corresponds to a more plausible mechanism for your data.

Examples: sizes or masses of individuals, especially rapidly growing individ-
uals; abundance vs. frequency curves for plant communities.

Summary:
range positive real values
R dlnorm, plnorm, qlnorm, rlnorm
density 1√

2πσx
e−(log x−µ)2/(2σ2)

parameters µ (real): mean of the logarithm [meanlog]
σ (real): standard deviation of the logarithm [sdlog]

mean exp(µ + σ2/2)
variance exp(2µ + σ2)(exp(σ2)− 1)
CV

√
exp(σ2)− 1 (≈ σ when σ < 1/2)
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Figure 17: Relationships among probability distributions.

6 Extending simple distributions; compounding
and generalizing

What do you do when none of these simple distributions fits your data? You
could always explore other distributions. For example, the Weibull distribution
(similar to the Gamma distribution in shape: ?dweibull in R) generalizes the
exponential to allow for survival probabilities that increase or decrease with
age (p. ??). The Cauchy distribution (?dcauchy in R), described as fat-tailed
because the probability of extreme events (in the tails of the distribution) is
very large — larger than for the exponential or normal distributions — can be
useful for modeling distributions with many outliers. You can often find useful
distributions for your data in modeling papers from your subfield of ecology.

However, in addition to simply learning more distributions it can also useful
to learn some strategies for generalizing more familiar distributions.

6.1 Adding covariates

One obvious strategy is to look for systematic differences within your data that
explain the non-standard shape of the distribution. For example, a bimodal or
multimodal distribution (one with two or more peaks, in contrast to most of
the distributions discussed above that have a single peak) may make perfect
sense once you realize that your data are a collection of objects from different
populations with different means.For example, the sizes or masses of sexually
dimorphic animals or animals from several different cryptic species would bi-
or multimodal distributions, respectively. A distribution that isn’t multimodal
but is more fat-tailed than a normal distribution might indicate systematic
variation in a continuous covariate such as nutrient availability, or maternal
size, of environmental temperature, of different individuals.
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6.2 Mixture models

But what if you can’t identify systematic differences? You can still extend
standard distributions by supposing that your data are really a mixture of ob-
servations from different types of individuals, but that you can’t observe the
(finite) types or (continuous) covariates of individuals. These distributions are
called mixture distributions or mixture models. Fitting them to data can be
challenging, but they are very flexible.

6.2.1 Finite mixtures

Finite mixture models suppose that your observations are drawn from a discrete
set of unobserved categories, each of which has its own distribution: typically all
categories have the same type of distribution, such as normal, but with different
mean or variance parameters. Finite mixture distributions often fit multimodal
data. Finite mixtures are typically parameterized by the parameters of each
component of the mixture, plus a set of probabilities or percentages describing
the amount of each component. For example, 30% of the organisms (p = 0.3)
could be in group 1, normally distributed with mean 1 and standard deviation
2, while 70% (1 − p = 0.7) are in group 2, normally distributed with mean
5 and standard deviation 1 (Figure 18). If the peaks of the distributions are
closer together, or their standard deviations are larger so that the distributions
overlap, you’ll see a broad (and perhaps lumpy) peak rather than two distinct
peaks.

Zero-inflated models are a common type of finite mixture model (Inouye,
1999; Martin et al., 2005). Zero-inflated models (Figure 1). combine a standard
discrete probability distribution (e.g. binomial, Poisson, or negative binomial),
which typically include some probability of sampling zero counts even when
some individuals are present, with some additional process that can also lead to
a zero count (e.g. complete absence of the species or trap failure).

6.3 Continuous mixtures

Continuous mixture distributions, also known as compounded distributions, al-
low the parameters themselves to vary randomly, drawn from their own distri-
bution. They are a sensible choice for overdispersed data, or for data where you
suspect that unobserved covariates may be important. Technically, compounded
distributions are the distribution of a sampling distribution S(x, p) with param-
eter(s) p that vary according to another (typically continuous) distribution P (p).
The distribution of the compounded distribution C is C(x) =

∫
S(x, p)P (p)dp.

For example, compounding a Poisson distribution by drawing the rate parame-
ter λ from a Gamma distribution with shape parameter k (and scale parameter
λ/k, to make the mean equal to λ) results in a negative binomial distribution
(p. 22). Continuous mixture distributions are growing ever more popular in
ecology as ecologists try to account for heterogeneity in their data.

The negative binomial, which could also be called the Gamma-Poisson dis-
tribution to highlight its compound origin, is the most common compounded
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Figure 18: Finite mixture distribution: 70% Normal(µ = 1, σ = 2), 30%
Normal(µ = 5, σ = 1).
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distribution. The Beta-binomial is also fairly common: like the negative bi-
nomial, it compounds a common discrete distribution (binomial) with its con-
jugate prior (Beta), resulting in a mathematically simple form that allows for
more variability. The lognormal-Poisson is very similar to the negative bino-
mial, except that (as its name suggests) it uses the lognormal instead of the
Gamma as a compounding distribution. One technical reason to use the less
common lognormal-Poisson is that on the log scale the rate parameter is nor-
mally distributed, which simplifies some numerical procedures (Elston et al.,
2001).

Clark et al. (1999) used the Student t distribution to model seed disper-
sal curves. Seeds often disperse fairly uniformly near parental trees but also
have a high probability of long dispersal. These two characteristics are incom-
patible with standard seed dispersal models like the exponential and normal
distributions. Clark et al. assumed that the seed dispersal curve represents a
compounding of a normal distribution for the dispersal of any one seed with an
Gamma distribution of the inverse variance of the distribution of any particular
seed (i.e., 1/σ2 ∼ Gamma)∗. This variation in variance accounts for the differ-
ent distances that different seeds may travel as a function of factors like their
size, shape, height on the tree, and the wind speed at the time they are released.
Clark et al. used compounding to model these factors as random, unobserved
covariates since they are practically impossible to measure for all the individual
seeds on a tree or in a forest.

The inverse Gamma-normal model is equivalent to the Student t distribu-
tion, which you may recognize from t tests in classical statistics and which
statisticians sometimes use as a phenomenological model for fat-tailed distribu-
tions. Clark et al. extended the usual one-dimensional t distribution (?dt in
R) to the two-dimensional distribution of seeds around a parent and called it
the 2Dt distribution. The 2Dt distribution has a scale parameter that deter-
mines the mean dispersal distance and a shape parameter p. When p is large
the underlying Gamma distribution has a small coefficient of variation and the
2Dt distribution is close to normal; when p = 1 the 2Dt becomes a Cauchy
distribution.

Generalized distributions are an alternative class of mixture distribution that
arises when there is a sampling distribution S(x) for the number of individuals
within a cluster and another sampling distribution C(x) for number of clusters
in a sampling unit. For example, the distribution of number of eggs per square
might be generalized from the distribution of clutches per square and of eggs
per clutch. A standard example is the “Poisson-Poisson” or “Neyman Type A”
distribution (Pielou, 1977), which assumes a Poisson distribution of clusters
with a Poisson distribution of individuals in each.

Figuring out the probability distribution or density formulas for compounded
distributions analytically is mathematically challenging (see Bailey (1964) or
Pielou (1977) for the gory details), but R can easily generate random numbers

∗This choice of a compounding distribution, which may seem arbitrary, turns out to be
mathematically convenient.
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from these distributions (see the R supplement for more detail).
The key is that R’s functions for generating random distributions (rpois,

rbinom, etc.) can take vectors for their parameters. Rather than generate
(say) 20 deviates from a binomial distribution with N trials and and a fixed
per-trial probability p, you can choose 20 deviates with N trials and a vector
of 20 different per-trial probabilities p1 to p20. Furthermore, you can gener-
ate this vector of parameters from another randomizing function! For example,
to generate 20 beta-binomial deviates with N = 10 and the per-trial proba-
bilities drawn from a beta distribution with a = 2 and b = 1, you could use
rbinom(20,rbeta(20,2,1)).

Compounding and generalizing are powerful ways to extend the range of
stochastic ecological models. A good fit to a compounded distribution also sug-
gests that environmental variation is shaping the variation in the population.
But be careful: Pielou (1977) demonstrates that for Poisson distributions, every
generalized distribution (corresponding to variation in the underlying density)
can also be generated by a compound distribution (corresponding to individuals
occurring in clusters), and concludes that (p. 123) “the fitting of theoretical fre-
quency distributions to observational data can never by itself suffice to ‘explain’
the pattern of a natural population”.
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Figure 19: R functions for an arbitrary distribution dist, showing density
function (ddist), cumulative distribution function (pdist), quantile function
(qdist), and random-deviate function (rdist).

7 R supplement

For all of the probability distributions discussed in this chapter (and many more:
try help.search("distribution")), R can generate random numbers drawn
from the distribution (“deviates”); compute the cumulative distribution function
and the probability distribution function; and compute the quantile function,
which gives the x value such that

∫ x

0
P (x) dx (area under the curve from 0 to

x) is a specified value. For example, you can obtain the critical values of the
standard normal distribution, ±1.96, with qnorm(0.025) and qnorm(0.975)
(Figure 19).

7.1 Discrete distribution

For example, let’s explore the (discrete) negative binomial distribution.
First set the random-number seed for consistency:

> set.seed(1001)

Arbitrarily choose parameters µ = 10 and k = 0.9 — since k < 1, this
represents a strongly overdispersed population. Remember that R uses size to
denote k, because k is mathematically equivalent to the number of failures in
the failure-process parameterization.

> z <- rnbinom(1000, mu = 10, size = 0.9)
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Check the first few values:

> head(z)

[1] 41 3 3 0 11 14

Since the negative binomial has no set upper limit, we will just plot the
results up to the maximum value sampled:

> maxz <- max(z)

The easiest way to plot the results is:

> f <- factor(z, levels = 0:maxz)

> plot(f)

using the levels specification to make sure that all values up to the maxi-
mum are included in the plot even when none were sampled in this particular
experiment.

If we want the observed probabilities (freq/N) rather than the frequencies:

> obsprobs <- table(f)/1000

> plot(obsprobs)

Add theoretical values:

> tvals <- dnbinom(0:maxz, size = 0.9, mu = 10)

> points(0:maxz, tvals)

You could plot the deviations with plot(0:maxz,obsprobs-tvals); this
gives you some idea how the variability changes with the mean.

Find the probability that x > 30:

> pnbinom(30, size = 0.9, mu = 10, lower.tail = FALSE)

[1] 0.05725252

By default R’s distribution functions will give you the lower tail of the distri-
bution — the probability that x is less than or equal to some particular value.
You could use 1-pnbinom(30,size=0.9,mu=10) to get the uppper tail since
Prob(x > 30) = 1 − Prob(x ≤ 30), but using lower.tail=FALSE to get the
upper tail is more numerically accurate.

What is the upper 95th percentile of the distribution?

> qnbinom(0.95, size = 0.9, mu = 10)

[1] 32

To get the lower and upper 95% confidence limits, you need

> qnbinom(c(0.025, 0.975), size = 0.9, mu = 10)
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[1] 0 40

You can also use the random sample z to check that the mean and variance,
and 95th quantile of the sample, agree reasonably well with the theoretical
expectations:

> mu <- 10

> k <- 0.9

> c(mu, mean(z))

[1] 10.000 9.654

> c(mu * (1 + mu/k), var(z))

[1] 121.1111 113.6539

> c(qnbinom(0.95, size = k, mu = mu), quantile(z, 0.95))

95%
32 31

7.2 Continuous distribution: lognormal

Going through the same exercise for the lognormal, a continuous distribution:

> z <- rlnorm(1000, meanlog = 2, sdlog = 1)

Plot the results:

> hist(z, breaks = 100, freq = FALSE)

> lines(density(z, from = 0), lwd = 2)

Add theoretical values:

> curve(dlnorm(x, meanlog = 2, sdlog = 1), add = TRUE,

+ lwd = 2, from = 0, col = "darkgray")

The probability of x > 20, 95% confidence limits:

> plnorm(30, meanlog = 2, sdlog = 1, lower.tail = FALSE)

[1] 0.08057753

> qlnorm(c(0.025, 0.975), meanlog = 2, sdlog = 1)

[1] 1.040848 52.455437

Comparing the theoretical values given on p. 38 with the observed values for
this random sample:
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Distribution Type Range Skew Examples
Binomial Discrete 0, N any Number surviving, number killed
Poisson Discrete 0,∞ right → none Seeds per quadrat, settlers (vari-

ance/mean ≈ 1)
Negative binomial Discrete 0,∞ right Seeds per quadrat, settlers (vari-

ance/mean > 1)
Geometric Discrete 0,∞ right Discrete lifetimes
Normal Continuous −∞,∞ none Mass
Gamma Continuous 0,∞ right Survival time, distance to nearest

edge
Exponential Continuous 0,∞ right Survival time, distance to nearest

edge
Lognormal Continuous 0,∞ right Size, mass (exponential growth)

Table 1: Summary of probability distributions

> meanlog <- 2

> sdlog <- 1

> c(exp(meanlog + sdlog^2/2), mean(z))

[1] 12.18249 12.12708

> c(exp(2 * meanlog + sdlog^2) * (exp(sdlog^2) - 1),

+ var(z))

[1] 255.0156 184.7721

> c(qlnorm(0.95, meanlog = meanlog, sdlog = sdlog),

+ quantile(z, 0.95))

95%
38.27717 39.65172

There is a fairly large difference between the expected and observed variance.
This is typical: variances of random samples have larger variances, or abso-
lute differences from their theoretical expected values, than means of random
samples.

Sometimes it’s easier to deal with log-normal data by taking the logarithm
of the data and comparing them to the normal distribution:

> hist(log(z), freq = FALSE, breaks = 100)

> curve(dnorm(x, mean = meanlog, sd = sdlog), add = TRUE,

+ lwd = 2)
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7.3 Mixing and compounding distributions

7.3.1 Finite mixture distributions

The general recipe for generating samples from finite mixtures is to use a uniform
distribution to sample which of the components of the mixture to sample, then
use ifelse to pick values from one distribution or the other. To pick 1000 values
from a mixture of normal distributions with the parameters shown in Figure 18
(p = 0.3, µ1 = 1, σ1 = 2, µ2 = 5, σ2 = 1):

> u1 <- runif(1000)

> z <- ifelse(u1 < 0.3, rnorm(1000, mean = 1, sd = 2),

+ rnorm(1000, mean = 5, sd = 1))

> hist(z, breaks = 100, freq = FALSE)

The probability density of a finite mixture composed of two distributions D1

and D2 in proportions p1 and 1− p1 is p1D1 + p2D2. We can superimpose the
theoretical probability density for the finite mixture above on the histogram:

> curve(0.3 * dnorm(x, mean = 1, sd = 2) + 0.7 * dnorm(x,

+ mean = 5, sd = 1), add = TRUE, lwd = 2)

The general formula for the probability distribution of a zero-inflated distri-
bution, with an underlying distribution P (x) and a zero-inflation probability of
pz, is:

Prob(0) = pz + (1− pz)P (0)
Prob(x > 0) = (1− pz)P (x)

So, for example, we could define a probability distribution for a zero-inflated
negative binomial as follows:

> dzinbinom = function(x, mu, size, zprob) {

+ ifelse(x == 0, zprob + (1 - zprob) * dnbinom(0,

+ mu = mu, size = size), (1 - zprob) * dnbinom(x,

+ mu = mu, size = size))

+ }

(the name, dzinbinom, follows the R convention for a probability distribution
function: a d followed by the abbreviated name of the distribution, in this case
zinbinom for “zero-inflated negative binomial”).

The ifelse command checks every element of x to see whether it is zero or
not and fills in the appropriate value depending on the answer.

Here’s a random deviate generator:

> rzinbinom = function(n, mu, size, zprob) {

+ ifelse(runif(n) < zprob, 0, rnbinom(n, mu = mu,

+ size = size))

+ }
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The command runif(n) picks n random values between 0 and 1; the ifelse
command compares them with the value of zprob. If an individual value is less
than zprob (which happens with probability zprob=pz), then the corresponding
random number is zero; otherwise it is a value picked out of the appropriate
negative binomial distribution.

7.3.2 Compounded distributions

Start by confirming numerically that a negative binomial distribution is really
a compounded Poisson-Gamma distribution. Pick 1000 values out of a Gamma
distribution, then use those values as the λ (rate) parameters in a random draw
from a Poisson distribution:

> k <- 3

> mu <- 10

> lambda <- rgamma(1000, shape = k, scale = mu/k)

> z <- rpois(1000, lambda)

> P1 <- table(factor(z, levels = 0:max(z)))/1000

> plot(P1)

> P2 <- dnbinom(0:max(z), mu = 10, size = 3)

> points(0:max(z), P2)

Establish that a Poisson-lognormal and a Poisson-Gamma (negative bino-
mial) are not very different: pick the Poisson-lognormal with approximately the
same mean and variance as the negative binomial just shown.

> mlog <- mean(log(lambda))

> sdlog <- sd(log(lambda))

> lambda2 <- rlnorm(1000, meanlog = mlog, sdlog = sdlog)

> z2 <- rpois(1000, lambda2)

> P3 <- table(factor(z2, levels = 0:max(z)))/1000

> matplot(0:max(z), cbind(P1, P3), pch = 1:2)

> lines(0:max(z), P2)
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