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Summary

This chapter addresses models that incorporate more than one kind of variabil-
ity, variously called mized, multilevel, multistratum, or hierarchical models. It
starts by considering data with (1) changing amounts of variability or (2) cor-
relation among data points. These kinds of data can be modeled adequately
with the tools introduced in previous chapters. The last part of the chapter
considers data with two or more qualitatively different sources of variability.
These kinds of data are much more challenging to model, but they can be fitted
with analytical or numerical integration techniques or via MCMC. This chapter
is more conceptual and less technical than previous chapters.

1 Introduction

Throughout this book we have partitioned ecological models into deterministic
(Chapter ??) and stochastic (Chapter ??) submodels. For example, we might
use a deterministic logistic function to describe changes in mean population
density with increasing rainfall and a Gamma stochastic distribution to describe
the natural variation in population density at a particular level of rainfall. We
have focused most of our attention on constructing the deterministic model and
testing for differences in parameters among groups or as a function of covariates.
For the stochastic model, we have stuck to fitting single parameters such as
the variance (for normally distributed data) or the overdispersion parameter
(for negative binomially distributed data) to describe the variability around the
deterministic expectation. We have assumed that the variance parameter is
constant, and that we can use a single distribution to describe the variability.
This chapter will explore more sophisticated stochastic models for ecological
data. Section 2 is a warm-up, presenting models where the variance may differ
among groups or change as a function of a covariate. These models are easy
to fit with our existing tools. Section 3 briefly reviews models for correlation
among observations, useful for incorporating spatial and temporal structure.
Sections 4 and 5 tackle models that incorporate more than one type of vari-
ability, variously referred to as mixed, multilevel, multistratum, or hierarchical
models. Section 4 discusses how to use canned procedures in R to fit multi-level



models — or to cheat and avoid fitting multi-level models at all — while section 5
briefly describes strategies for tackling more general multi-level models.

The most widely used multilevel models are block models, which divide in-
dividuals (or observations) into discrete groups according to their spatial or
temporal locations, genetic identity, or other characteristics. The model as-
signs each block a different random mean, typically drawn from a normal or
log-normal distribution. Individual responses within blocks vary around the
block mean, most commonly according to a normal distribution but sometimes
according to a Poisson or binomial sampling distribution. In survival analysis,
block models are called shared frailty models (Therneau et al., 2003).

Individual-level models allow for variation at the individual rather than the
group level. When individuals are measured more than once, the resulting
repeated measures models can be analyzed in the same way as block models.
They may also allow for temporal correlation among measurements, and more
sophisticated versions can quantify random variation among individuals in the
parameters of nonlinear models (Vigliola et al., 2007).

When individuals are measured only once, we lose a lot of power to dis-
criminate among-individual and within-individual variation. We can still make
progress, however, if we assume that the observed variation in individual re-
sponses is a combination of among-individual variation in a mean response and
a random sampling process (either in the ecological process itself, or in our
measurement of it) that leads to variation around the mean. The combination
of among-individual and sampling variation results in a marginal distribution
(the distribution of observations, including both levels of variability) that is
overdispersed, or more variable than expected from the sampling process alone.

Finally, when individuals or populations are measured over time we have
to distinguish between measurement and process error, because these two sorts
of variability act differently on ecological dynamics. Process error feeds back
to affect the ecological system in the next time step, while measurement error
doesn’t. We defer analysis of such dynamical models to Chapter ?7.

Building models that combine several deterministic processes is straight-
forward. For example, if we know the functions for mean plant biomass as a
function of light availability (say B(L) = aL/(b+ L)) and for mean fecundity as
a function of biomass (say F/(B) = cB?), we can easily combine them mathemat-
ically in order to use the combined function in a maximum likelihood estimate
(F(L) = ¢(aL/(b+L))%)*. Incorporating multiple levels of variability in a model
is harder because we usually have to compute an integral in order to average
over all the different ways that different sources might combine to produce a
particular observation. For example, suppose that the probability that a plant
establishes in an environment with light availability L is Pr(L)dL (where P,
is the probability density) and the probability that it will grow to biomass B
at light level L is P (B, L)dB. Then the marginal probability density Pg(B)
that a randomly chosen plant will have biomass B is the combination of the

*Although we may not be able to estimate all the parameters separately. In this case, we
can estimate ca® but cannot estimate ¢ and a? separately: see p. 19.



all the different probabilities of achieving biomass B at different light levels:
| Pg(B,L)P(L)dL.

Computing these integrals analytically is often impossible, but for some mod-
els the answer is known (Section 5.1). Otherwise, we can either use numerical
brute force to compute them (Section 5.2), or use Markov chain Monte Carlo to
compute a stochastic approximation to the integral (Section 5.3). These meth-
ods are challenging enough that, in contrast to the models of previous chapters,
you will often be better off finding an existing procedure that matches the char-
acteristics of your data rather than coding the model from scratch.

2 Variable variance

Once we’ve thought of it, it’s simple to incorporate changes in variance into an
ecological model. All we have to do is define a sensible model that describes
how a variance parameter changes as a function of predictor variables. For
example, Figure 1 shows data on glacier lilies (Erythronium glandiflorum) that
display the typical triangular or “factor-ceiling” profile of many ecological data
sets (Thomson et al., 1996). The triangular distribution is often caused by an
environmental variable that sets an upper limit on an ecological response, but
does not determine its precise value. In this case, the density of adult flowers
(or something associated with adult density) appears to set an upper limit on
the density of seedlings, but the number of seedlings varies widely below the
upper limit. I fitted the model

S ~ NegBinom (u = a,k = Ced‘f) ; (1)

where S is the observed number of seedlings and f is the number of flowers.
The mean p is constant, but the overdispersion parameter k increases (and
thus the variance decreases) as the number of flowers increases. The R negative
log-likelihood function for this model is

> nlikfun = function(a, c, d) {

+ k = ¢ * exp(d * flowers)
+ -sum(dnbinom(seedlings, mu = a, size = k, log = TRUE))
+ }

Alternatively, the mle2 formula would be

> mle2(seedling ~ dbinom(mu = a, size = c¢ * exp(d *
+ flowers)), ...)

This function resembles our previous examples, except that the variance pa-
rameter rather than the mean parameter changes with the predictor variable
(f or flowers). Figure 1 shows the estimated mean (which is constant) and
the estimated upper 90%, 95%, and 97.5% quantiles, which look like stair-steps
because the negative binomial distribution is discrete. It also shows a nonpara-
metric density estimate for the mean and quantiles as a function of the number
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Figure 1: Lily data from Thomson et al. (1996); (jittered) numbers of seedlings
as a function of number of flowers. Black lines show fit of negative binomial
model with constant mean and increasing k/decreasing variance; gray lines are
from a nonparametric density estimate.

of flowers, as a cross-check of the appropriateness of the parametric negative
binomial model. The patterns agree qualitatively — both models predict a
roughly constant mean and decreasing upper quantiles. Testing combinations
of models that allow mean, variance, both, or neither to vary with the numbers
of flowers suggests that the best model is the constant model, but the model fit-
ted here (constant mean, varying k) is the second best, better than allowing the
mean to decrease while holding k constant. Thomson et al. (1996) suggested a
pattern where the ceiling actually increases initially at small numbers of flowers,
but this pattern is hard to establish definitively.

The same general strategy applies for the variance parameter of other distri-
butions such as the variance of a normal distribution or log-normal distribution,
the shape parameter of the gamma distribution, or the overdispersion param-
eter of the beta-binomial distribution. Just as with deterministic models for
the mean value, the variance might differ among different groups or treatment
levels (represented as factors in R), might change as a function of a continuous
covariate as in the example above, or might depend on the interactions of factors



and covariates (i.e., different dependence of variance on the covariate in differ-
ent groups). Just the variance, or both the mean and the variance, could differ
among groups. Use your imagination and your biological intuition to decide on
a set of candidate models, and then use the LRT or AIC values to choose among
them.

It’s best to fit variance parameters on the log scale (log o2, log k etc.) to make
sure the variances are always positive. For fitting to continuous covariates, use
non-negative functions such as the exponential (02 = ae’®) or power (02 = ax?),
for the same reason.

When it is reasonable to use a normal distribution to model the variability,
you can use the built-in functions gls and gnls from the nlme: gls fits linear
and gnls fits nonlinear models. These models are called generalized (non)linear
least squares models*. The weights argument allows a variety of relationships
(exponential, power, etc.) between covariates and the variance. For example,
using the fir data, suppose we wanted to fit a power-law model for the mean
number of cones as a function of DBH and include a power-law model for the
variance as a function of DBH:

cones ~ Normal(u = aDBH?, 02 = DBH®) (2)
Fitting the model with gnls:

data (FirDBHFec)
firdata = na.omit (FirDBHFec)
gnls(TOTCONES ~ a * DBH"b, data = firdata,
weights = varPower(form = “DBH), start = list(a = 1,
b=1))

+ + Vv vV

The syntax of weights argument is a bit tricky: Pinheiro and Bates (2000)
is essential background reading.

3 Correlations: time-series and spatial data

Up to now we have assumed that the observations in a data set are all indepen-
dent. When this is true, the likelihood of the entire data set is the product of the
likelihoods of each observation, and the negative log-likelihood is the sum of the
negative log-likelihoods of each observation. Every negative log-likelihood func-
tion we have written has contained code like -sum(ddistrib(...,1log=TRUE)),
either explicitly or implicitly, to capitalize on this fact. With a bit more effort,
however, we can write down and numerically optimize likelihood functions that
allow for correlations among observations.

It’s best to avoid correlation entirely by designing your observations or ex-
periments appropriately. Correlation among data points is a headache to model,
and it always reduces the total amount of information in the data: correlation
means that data points are more similar to each other than expected by chance,

*Not to be confused with general linear models or generalized linear models!



so the total amount of information in the data is smaller than if the data were
independent. However, if you are stuck with correlated data — for example,
because your samples come from a spatial array or a time series — all is not
lost. Moreover, sometimes the correlation in the data is biologically interesting:
for example the range of spatial correlation might indicate the spatial scale over
which populations interact.

The standard approach to correlated data is to specify a likelihood of cor-
related data, usually using a multivariate normal distribution. The probability
distribution of the multivariate normal distribution (dmvnorm in the emdbook
package) is

MVN(x, 1, V) = L )™V (x u)) G

1
NCoE <2

where x is a vector of data values, p is a vector of means, and V is the variance-
covariance matrix (| V| is the determinant of V — see below — and 7 stands for
transposition). The formula looks scary, but like most matrix equations you can
understand it pretty well by making analogies to the scalar (i.e. non-matrix)
equivalent, in this case the univariate normal distribution

N(x) = 1/V2m0? exp((x — )/ (202). (4)

The term exp((v — p)TV=(v — p)) is the most important part of the formula,
equivalent to the exp(—(z — p)?/(202)) term in the univariate normal distribu-
tion. (v — w) is the deviation of the observations from their theoretical mean
values. Multiplying by V! is equivalent to dividing by the variance, and multi-
plying by (v — u)T is equivalent to squaring the deviations from the mean. The
stuff in front of this term is the normalization constant. The |V| matches the
o2 in the normalization constant of the univariate normal, and the V27 term is
raised to the n'h power to normalize the n-dimensional probability distribution.
If all the points are actually independent and have identical variances, then
the variance-covariance matrix is a diagonal matrix with ¢2 on the diagonal:

o2 0 ... 0
0 o2 ... 0

v=| . . o] (5)
0 0 ... o2

Comparing equations 3 and 4 one term at a time shows that the multivariate nor-
mal reduces to a product of identical univariate normal probabilities in this case.
For a diagonal matrix with o2 on the diagonal, the inverse is a diagonal matrix
with 1/02 on the diagonal, so the matrix multiplication exp((x—p)T V=1 (x—pu))
works out to >, (@; — p;)?/0? — the sum of squared deviations. For a diago-
nal matrix, the determinant | V| is the product of the diagonal elements, so for
identical-variance case |V| = (02)", which equals the product of the normalizing
constants for n independent normal distributions.



If the points are independent but each point has a different variance — like
assigning different variances to different groups with one individual each in each
group — then

a2 0 0
0 o3 ... 0

v=| . . (6)
0 O o2

Carrying through the exercise of the previous paragraph will show that the
multivariate normal reduces to a product of univariate normals, each with its
own variance. The exponent term is now half the weighted sum of squares
S (vi—pu3)?/(0?), with the deviation for each point weighted by its own variance;
data points with larger variances have less influence on the total.

Most generally,

2
01 g12 ... O1n
2
J21 g5 ... O2n
v=| . (7)
2
Onl1 On2 g,

The off-diagonal elements o;; quantify the covariance between points 7 and j.
We could also specify this information in terms of the correlation matriz C =

{pij} = {oij /A /0120]2-}. The diagonal elements of the correlation matrix p;; all

equal 1, and the off-diagonal elements range between -1 (perfect anticorrelation)
and 1 (perfect correlation) The variance-covariance matrix V must be symmetric
(i.e., 0i; = 0j;). In this case there is no way to express the exponent as a sum
of independent normals, but its meaning is the same as in the previous cases: it
weights combinations of deviations by the appropriate variances and covariances.

To fit a correlated multivariate normal model, you would need to specify
parameters for the variance-covariance matrix V. In principle you could specify
n(n—1)/2 different parameters for each of the distinct entries in the matrix (since
the matrix is symmetric there are n(n — 1)/2 rather than n? distinct entries),
but there are two reasons not to. First, such a general parameterization takes
lots of parameters. Unless we have lots of data, we probably can’t afford to use
up so many parameters specifying the variance-covariance matrix. Second, in
addition to being symmetric, variance-covariance matrices must also be positive
definite, which means essentially that the relationships among points must be
consistent®. For example,

109 —09
v=| 09 1 09 (8)
—09 09 1

is not a valid correlation matrix, even though it is symmetric’. It states that site
1 is strongly positively correlated with site 2 (p;2 = 0.9), and site 2 is strongly

*Technically, positive definiteness means that the matrix must have all positive eigenvalues.
TIts eigenvalues are 1.9 (repeated twice) and -0.8.



correlated with site 3 (023 = 0.9), but site 1 is strongly negatively correlated
with site 3 (013 = —0.9), which is not possible.

For these two reasons, modelers usually select from established correlation
models that (1) use a small number of parameters to construct a full variance-
covariance (correlation) matrix and (2) ensure positive definiteness. For exam-

ple,

1 p p? .. p”1
p 1 p e pT

V =¢2C =52 : : . . . ) 9)
pn pnfl pn72 . 1

with |p| < 1, specifies a correlation matrix C corresponding to sites arranged in
a line — or data taken in a temporal sequence — where correlation falls off with
the number of steps between sites (sampling times): nearest neighbors (sites 1
and 2, 2 and 3, etc.) have correlation p, next-nearest neighbors have correlation
p?, and so forth*. Other correlation models allow correlation p;; to drop to
zero at some threshold distance, or to be a more general function of the spatial
distance between sites.

Three different areas of classical statistics use multivariate normal distribu-
tions to describe correlation among observations. Repeated-measures ANOVA
is a form of analysis of variance that allows the errors to be non-independent in
some way, particularly by building in individual-level variation (see Section 4.1)
but also by allowing for correlation between successive points in time. Time-
series models (Chatfield, 1975; Diggle, 1990; Venables and Ripley, 2002) and
spatial models (Ripley, 1981; Cressie, 1991; Kitanidis, 1997; Haining, 2003; Ven-
ables and Ripley, 2002) specify correlation structures that make sense in tem-
poral and spatial contexts, respectively.

Generalized least-squares (glnlls) allows for correlation among observa-
tions, using the correlation argument. These functions include a variety of
standard models for temporal and spatial autocorrelation: see ?corClasses (in
the nlme package), and Pinheiro and Bates (2000), for more details. The 1me and
nlme functions, which fit repeated-measures models, also have a correlation
argument. The ts package implements time-series models, which incorporate
correlation, although the description and methods used are fairly different from
the more general models described here. The spatial package also allows you
to fit trend lines and surfaces with spatial autocorrelation between points as a
function of distance.

To construct variance-covariance functions to use in your own custom-made
likelihood functions, start with the matrix function (for general matrices) or
diag (for diagonal matrices) and extend them. For example, diag(4) produces
a4 x 4 identity matrix (with 1 on the diagonal); diag(c(2,3,4)) produces a 3
x 3 diagonal matrix with variances of 2, 3, and 4 on the diagonal. The row and

*This correlation matrix is sometimes referred to as AR(1), meaning “autoregressive order
1”, meaning that each point is correlated directly with its first neighbor. The higher powers of
p with distance arise because of a chain of correlation: next-nearest-neighbors are correlated
through their mutual neighbor and so on.



col functions, which return matrices encoding row and column numbers, are also
useful. For example, d=abs (row(M)-col (M)) produces a absolute-value distance
matrix {|¢ — j|} with the same dimensions as M, and rho~d produces correlation
matrix (9). The slightly tricky code ifelse(d==0,1,ifelse(d==1,rho,0))
produces a matrix with 1 on the diagonal, rho on the first off-diagonal, and 0
elsewhere, corresponding to correlation only among nearest-neighbor sites.

If your data are irregularly spaced or two-dimensional, you can start by com-
puting a matrix of the distances between points, using d=as.matrix(dist (cbind(x,y)))*.
Then you can easily use the distance matrix to compute exponential (propor-
tional to e~?), Gaussian (proportional to e_dZ), or other spatial correlation
matrices. Consult Venables and Ripley (2002) or a spatial statistics reference
for more details.

Once you have constructed a correlation matrix, multiply it by the variance
to get a covariance matrix suitable for use with the dmvnorm density function.
For example, negative log-likelihood

> -dmvnorm(z, mu, Sigma = V, log = TRUE)

where z is a vector of data, mu is a mean vector, and V is one of the variance-
covariance matrices defined above. You can also use the mvrnorm command from
the MASS package to generate random, correlated normal deviates. For example,
mvrnorm(n=1,mu=rep(3,5) ,Sigma=V) produces a 5-element vector with a mean
of 3 for each element and variance-covariance matrix V. Asking mvrnorm for more
than one random deviate will produce a 5-column matrix where each row is a
separate draw from the multivariate distribution.

Statisticians usually deal with non-normal (e.g. Poisson or binomial), corre-
lated data by combining a multivariate normal model for the underlying mean
values with a non-normal distribution based on these varying means. We usually
exponentiate the MVN distribution to get a multivariate log-normal distribu-
tion so that the means are always positive. For example, to model correlated
Poisson data we could assume that A(x), the expected number of counts at a
point z, is the exponential of a multivariate normally distributed variable with
variance-covariance matrix V:

Y ~ Poisson(A)

A ~ exp(MVN(p, V). (10)

Here Y is a vector of counts at different locations; A (a random variable) is a
vector of expected numbers of counts (intensities); p is the log of the average
intensities; and V describes the variance and correlation of intensities. If we
had already used one of the recipes above to construct a variance-covariance
matrix V, and had a model for the mean vector mu, we could simulate the values
as follows:

> Lambda = exp(mvrnorm(l, mu = mu, Sigma = V))
> Y = rpois(length(mu), Lambda)

*dist(x,y) computes the distances between x and y, but returns the answer as a dist
object. It is more useful in this case to use as.matrix to convert it to a matrix.



Unfortunately, even though we can easily simulate values from this distribu-
tion, because there are two different levels of variation it’s hard to write down
a likelihood for this model. The rest of the chapter discusses how to formulate
and estimate the parameters for such multi-level models.

4 Multi-level models: special cases

While correlation models assume that samples depend on each other as a func-
tion of spatial or temporal distance, with overlapping neighborhoods in space or
time, traditional multi-level models usually break the population into discrete
groups such as family, block, or site. Within groups, all samples are equally
correlated with each other. If samples 1 and 2 are from one site and samples 3
and 4 are from another, each pair would be correlated and we would write down
this variance-covariance matrix:

V =02C = ¢? (11)

oo
oo~
™ R OO
XY O O

Equivalently, we could specify a random-effects model that gives each group its
own random offset from the overall mean value. The correlation model (11) is
formally identical to a random-effects model where the value of the 5 individual
in the it group is

)/ij =€ + €ij, (12)

where €; ~ N(0,02) is the level of the random effect in the i'" block and €;; ~
N(0,02) is the the difference of the j** individual in the i*" block from the block

mean. The among-group variance o? and within-group variance o2 correspond
to the correlation parameters (p,0?):
2 2 2 2
oj, = po<, s, =(1-p)o=. (13)

Classical models usually describe variability in random-effects terms because
constructing huge variance-covariance matrices is very inefficient.

4.1 Fitting (normal) mixed models in R

Some special kinds of block models can be fitted with existing tools in R and in
many other statistics packages. Models with two levels of normally distributed
variation are called mized-effect models (or just mized models) because they
contain a mixture of random (between-group) and fixed effects. Classical block
ANOVA models such as split-plot and nested block models fall into this cate-
gory (Quinn and Keogh, 2002; Gotelli and Ellison, 2004). If the variation in
your model is normally distributed, your predictors are all categorical, and your
design is balanced, you can use the aov function with an Error term to fit mixed
models (Venables and Ripley, 2002). The nlme package, and the newer, more

10



powerful (but poorly documented) 1me4 package fit a far wider range of mixed
models (Pinheiro and Bates, 2000). The nlme package allows for unbalanced
data sets as well as random effects on parameters (e.g. ANCOVA with ran-
domly varying slopes among groups), and nonlinear mixed-effect models (e.g.
an exponential, power-law, logistic, or other non-linear curve with random vari-
ation in one or more of the parameters among groups).

4.2 Generalized linear mixed models

Generalized linear mized models, or GLMMs, are a cross between mixed models
and generalized linear models (p. ??7). GLMMs combine link functions and
exponential-family variation with random effects. The random effects must be
normally distributed on the scale of the linear predictor — meaning on the scale
of the data as transformed by the link function. For example, for a Poisson model
with a log link, the between-group variation would be log-normal. GLMMs
are cutting-edge, and the methods for solving them are evolving rapidly. The
glmmPQL function in the MASS package can fit an approximation to GLMMs, but
one that is sometimes inaccurate Breslow and Clayton (1993); Breslow (2003);
Jang and Lim (2005). The glmmML and lme4 offer more robust GLMM fitting
algorithms (use the family argument with lmer in the 1me4 package); so does
J. Lindsey’s repeated package, documented in his book (Lindsey, 1999) and
available on his web page (linked under “Related Projects” on the R project
page). If you want to be thorough, it may also be worth cross-checking your
results with PROC MIXED or NLMIXED in SAS.

R has built-in capabilities for incorporating random effects into a few other
kinds of models. Generalized additive mized models (GAMMs) (gamm in the
mgcv package) allow random effects and exponential-family variation with mod-
els where spline curves make up the deterministic part of the model. Frailty
models (frailty in the survival package) incorporate Gamma, ¢, or normally
distributed variation among groups in a survival analysis. Some other variations
such as non-normal repeated-measures models are described by Lindsey (1999,
2001, 2004).

4.3 Avoiding mixed models

Even when canned packages are available, fitting mixed models can be difficult.
The algorithms do not always converge, especially when the number of groups is
small. If your design is linear, balanced, and has only two levels of random effects
(i.e., among and between blocks) then aov should always work, but otherwise
you may be at a loss.

If you want to avoid fitting mixed models altogether, one option is to fit
fixed-effect models instead, estimating a parameter for each group rather than
a random variable for the among-group variation (Clark et al., 2005). You will
probably lose some power this way, so the results are likely to be conservative*.

*The distinction between fixed effects and random effects is murky in any case: see Crawley
(2002, p. 670) for some rules of thumb, and Gelman (2005, p. 20) for more than you ever
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As a second option, (Gotelli and Ellison, 2004, p. 182) that when you have
a simple nested design (i.e., subsamples within blocks) you should often just
collapse each group’s data by computing its mean and do a single-level analysis.
This will be disappointing if you were hoping to glean information about the
within-group variance as well, but it is simple and in many cases will give the
same p-value as the classical algorithm coded by aov. Finally, you can try to con-
vince yourself (and your reviewers, readers, or supervisor) that between-group
variation is unimportant by fitting the model ignoring blocks and examining the
variation of the residuals between blocks both graphically and statistically. In
order to justify ignoring between-group variation in the model, you must show
that the between-group variation in the residuals is both statistically and bio-
logically irrelevant. Biologically relevant variation is an important warning sign
even if it is not statistically significant.

5 General multi-level models

Now suppose that your data do not allow analysis by classical tools and that
you are both brave and committed to finding out what a multi-level model can
tell you.

5.1 Analytical models for marginal distributions

In some cases, it may be possible to solve the integrals that arise in multi-
level problems analytically. In this case you can fit the marginal distribution
directly to your data. The marginal distribution describes the combination of
multiple stochastic processes but doesn’t attempt to provide information about
the individual processes — analogous to knowing the row and column sums (the
marginal totals) of a table without knowing the distribution of values within the
table.

If you’re comfortable with math, you can read an advanced treatment such as
Bailey (1964) or Pielou (1977) to learn how to solve these problems. Otherwise,
you should do some research to see if someone has already found the answer for
your model. The most common of these distributions — the negative binomial
arising from a Poisson sampling process with underlying Gamma-distributed
variability, the beta-binomial arising from binomial sampling with underlying
Beta-distributed variability, and the Student ¢ distribution arising from normally
distributed variation with Gamma-distributed variability in the inverse variance
— were already discussed on p. ??. Zero-inflated distributions (p. ??) are an-
other example of a multi-level process — the combination of a presence/absence
process and a discrete sampling process — for which it is fairly easy to figure
out the marginal distribution.

If your multi-level process involves summing several values — for example,
if the measured value is the sum of a normally distributed block mean and a

wanted to know about the level of debate even among statisticians about the meaning of these
terms.
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normally distributed individual variation — then the marginal distribution is
called a convolution. If X and Y are random variables with probability densities
Px and Py, then the probability density of X +Y is

PXer(Z) = /Px(JJ) . Py(z — .’E) dx. (14)

The intuition behind this equation is that we are adding up all the possible ways
we could have gotten z. If X = x, then the value of Y must be z—x in order for
X +Y to equal z, so we can calculate the total probability by integrating over
all values of z. The convolutions of distributions with themselves — i.e., the
distribution of sums of like variables — can sometimes be solved analytically.
The sum of two normal variables N (u1,0%) and N (u2, 03) is also normal (N (1 +
pao, 0% + 03)); the sum of two Poisson variables is also Poisson (Pois(\;) +
Pois(A2) ~ Pois(A; + A2)); and the sum of n exponential variables with the
same mean is Gamma distributed with shape parameter n. These solutions are
simple, but they also warn us that we may sometimes face an identifiability
problem (p. 19) when we try to separate multiple levels of variability. If we
know only that the sum of two normally distributed variables is N (u,0?), then
we can’t recover any more information about the means and variance of the
individual variables — except that the variances are between 0 and o2. (In the
case of classical block models we also know which group any individual belong
to, so we can partition variability within and among groups.)

5.2 Numerical integration

If you can’t find anyone who has computed the marginal distribution for your
problem analytically, you may still be able to compute it numerically.

A common problem in forest ecology is estimating the distribution of growth
rates g; of individual trees in a stand from size measurements S; in successive
censuses: g; = S; 2—9;,1. Foresters also commonly assume that adult trees can’t
shrink, or at least not much, but it’s typical to observe a small proportion of
individuals in a data set whose measured size in the second census is smaller than
their initial size. If we really think that measurement error is negligible, then
we're forced to conclude that the trees actually shrank. It’s standard practice
to go through the data set and throw out negative growth values, along with
any that are unrealistically big. Can we do better?

Although it is sensible to throw out really extreme values, which may repre-
sent transcription errors (being careful to keep the original data set intact and
document the rules for discarding outliers), we may be able to extract informa-
tion from the data set both about the “true” distribution of growth rates and
about the distribution of errors. The key is that the distributions of growth and
error are assumed to be different. The error distribution is symmetric and nar-
rowly distributed (we hope) around zero, while the growth distribution starts
at zero and is right-skewed. Thus, the negative tail of the distribution tells us
about error — negative values must contain at least some error.
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Specifically, let’s assume a gamma distribution of growth (we could equally
well use a log-normal) and a normal distribution of error. The growth distri-
bution has parameters a (shape) and s (scale), while the error distribution has
just a variance 02 — we assume that errors are equally likely to be positive or
negative, so the mean is zero. Then

Yirue ~ Gamma(s, a) (15)
Yobs ~ Normal(Yiyye» 02)

For normally distributed errors, we can also express this as the sum of the true
value and an error term:

Yobs = Yirue + 6 € ~ Normal(0, o) (16)

According to the convolution formula, the likelihood of a particular observed
value is:

P(Y psla, s, 0?) = P(Yipruete = Yopsla, 5,02) = /P(Ytrue =Y, ps—€la, s)-P(e|02) de

(17)
The log-likelihood for the whole data set is:

L= Zlog/P(Ytrue =Y} — €la, s) - P(e|o?) de. (18)

Unfortunately we can’t interchange the logarithm and the integral, which would
make everything much simpler.

It’s very easy to simulate some fake “data” from this system with plausible
parameters in order to test our approach:

> set.seed(1001)
> x.true = rgamma(1000, shape = 3, scale = 10)
> x.obs = rnorm(1000, mean = x.true, sd = 10)

In the R supplement (p. 7), I defined a getdist function that implements
equations 15-18. I then used mle2 and confint to find the maximum likelihood
values and profile confidence limits. It was slow, though: it took about 3 minutes
(for a total of 137 function evaluations) to find the MLE using Nelder-Mead,
and 164 minutes to calculate the profile confidence intervals.

true MLE Quadratic Quadratic Profile Profile

2.5% 97.5% 2.5% 97.5%
shape (a) 3 298 2.86 3.10 2.58 3.49
scale (s) 10 10.37 9.79 10.95 8.84  12.03
o 10 9.06 8.75 9.37 8.06  10.59

The estimates are encouragingly close to the true values, and the confidence
limits are reasonable. The quadratic confidence intervals, while too narrow
(especially for o) are close enough to the profile confidence intervals that the
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Figure 2: True and estimated distributions of growth rates and measurement
error for simulated forest data. Histogram, observed data. Lines, true and
estimated distributions of actual growth rate and measurement error.

extra 2.5 hours of computation may have been unnecessary. Figure 2 plots the
observed histogram along with the estimated and true distributions of actual
growth rates and the estimated and true distributions of measurement error.
Excitingly, we are actually able to recover a significant amount of accurate in-
formation about the growth rates and the measurement process in this example.

Numerical integration works well here, although it’s slow if we insist on cal-
culating profile confidence limits. Hand-coded numerical integration will always
be slower, and less stable, than the special-case algorithms built into pack-
ages like 1me4 or glmmML. A commercial package called AD Model Builder uses
sophisticated integration techniques to solve some very difficult multi-level mod-
eling problems, but I have not evaluated it (Skaug and Fournier, 2006; Kitakado
et al., 2006). Gelman and Hill (2006) primarily use R and BUGS to fit multi-
level models, but provide an appendix that describes how to fit some multi-level
models in SAS, AD Model Builder, and other packages. Brute-force numerical
integration can work reasonably well as long as you have enough data (both
enough individual data points and enough groups) and as long as your problem
has only one, or at most two, random variables to integrate. The estimation
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process is fairly straightforward, and numerical failures are usually obvious —
although you should do all the usual checks for convergence. Numerical integra-
tion methods also remain firmly in the maximum-likelihood paradigm, so you
won’t have to defend your use of Bayesian methods.

5.3 MCMC for mixed models

Most of the time, brute-force numerical integration as illustrated above is just
too hard. Once you have to integrate over more than one or two random vari-
ables, computing the integrals becomes extremely slow. MCMC is an alternative
way of doing these high-dimensional integrals, and it gets you confidence limits
“for free”. The disadvantages are that (1) it may be slower than sufficiently clever
numerical integration approximations; (2) you have to deal with the Bayesian
framework, including deciding on a set of reasonable priors (although Lele et al.
(2007) have recently suggested a simple method for using MCMC to do ML es-
timation for multi-level models); and (3) in badly determined cases where your
model is poorly defined or where the data don’t really contain enough informa-
tion, BUGS is more likely to give you an answer that doesn’t make sense instead
of just crashing — which is really bad.
The BUGS input file for the Gamma-normal model is extremely simple:

model {

for (i in 1:N) {
x.true[i] ~ dgamma(sh,rate)
x.obs[i] ~ dnorm(x.truel[i],tau)

}

sh ~ dgamma(0.01,0.01)

rate ~ dgamma(0.01,0.01)

tau ~ dgamma(0.01,0.01)

The first half of the model statement is a direct translation of the model (eq.
15): for each value in the data set, the observed value is assumed to be drawn
from a normal distribution centered on the true value, which is in turn drawn
from a Gamma distribution.

The second half of the model statement specifies vague Gamma-distributed
priors. As mentioned in Chapter 7?7, BUGS uses slightly different parameteri-
zations from R for the normal and Gamma distributions. It specifies the normal
by the mean and the precision 7, which is the reciprocal of the variance, and the
Gamma by the shape parameter (just as in R) and the rate parameter, which is
the reciprocal of the scale parameter. The mean of the gamma distribution is
shape/rate and the variance is shape/rate?; thus a standard weak gamma prior
uses equal shape and rate parameters (i.e. a mean of 1), with both the shape
and the rate parameter small (i.e. a large variance). In this case I've chosen
(0.01, 0.01).

We'd like to run chains starting from overdispersed starting points, as rec-
ommended in Chapter 77, so that we can run a Gelman-Rubin diagnostic test to
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see if the chains have converged. However, it’s still very important to start with
sensible starting values (so that BUGS doesn’t crash or take forever to burn in).
A good strategy is to find a reasonable starting point and then change different
parameters by up to an order of magnitude to get overdispersed starting points.

We can estimate a starting point for the Gamma parameters by fitting a
gamma distribution just to the non-zero observations:

> pos.obs = x.obs[x.obs > 0]
> f1 = fitdistr(pos.obs, '"gamma")

We can estimate a starting value for the precision (1) by selecting the neg-
ative observations, replicating them with the opposite sign, and calculating the
reciprocal of the variance:

> neg.obs = x.obs[x.obs < 0]
> bineg.obs = c(neg.obs, -neg.obs)
> tau0 = 1/var(bineg.obs)

You're not required to specify starting values for all of the parameters — if
you don’t, BUGS will pick a random starting value from the prior distribution
for that parameter. However, BUGS will often crash or converge slowly with
random starting values, especially if you use very weak priors. We will start the
chains for the true growth rates from 1 or from the observed growth rate for
each individual, whichever is greater: this strategy avoids negative values for
the true growth rate, which are impossible according to our model.

> tstart = pmax(x.obs, 1)

We specify a list of initial values for each chain: in this case I've decided to
start one chain at the values of the crude estimates calculated above, and the
other chains with perturbations of those estimates, with one or the other of the
parameters halved or increased to 150%. I didn’t bother to perturb the starting
values for the rate, but you could in a more thorough analysis.

> clist = as.list(coef(f1))

> params = list(tau = tauO, sh = clist$shape, rate = clist$rate,
+ x.true = tstart)

> inits = rep(list(params), 5)

> inits[[2]]$tau = 0.5 * tau0

> inits[[3]]$tau = 1.5 * tau0

> inits[[4]]$sh = 0.5 * clist$shape

> inits[[5]]$sh = 1.5 * clist$shape

We need to specify the data for BUGS:

v

N = length(x.obs)
data = list("x.obs", "N")

v

Finally, we specify for which parameters of the model we want BUGS to
save information. Of course we want to track the parameters of our model. In
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addition, it will be interesting to see what BUGS estimates for the true values,
uncorrupted by measurement error, of both the minimum observed value in the
data set (which obviously contains a lot of measurement error, since its value is
-15.7) and one of the values closest to the median*.

> (minval = which.min(x.obs))

[1] 670

> (medval = which.min(abs(x.obs - median(x.obs))))
[1] 675

> parameters = c("sh", "rate", "tau", "x.truel[670]",
+ "x.true[675]")

Running the model:

> gnl.bugs = bugs(data, inits, parameters.to.save = parameters,
+ model.file = "gammanorm.bug", n.chains = length(inits))

BUGS took 264 minutes to run the models. The Gelman-Rubin statistics
were all well below the rule-of-thumb cutoff of 1.2, suggesting that the chains
had converged. Using as.mcmc to convert the BUGS result gnl.bugs to a
CODA object and running traceplot and densityplot confirmed graphically
that the chains gave similar answers, and that the posterior distributions are
approximately normal: the Gelman-Rubin test makes this assumption, so it’s
good to check.

true mean  2.5%  97.5%

shape 3.00 2993 2612 3.471
rate 0.10 0.097  0.084 0.112
T 0.01  0.012 0.009 0.017
min val 10.70  7.556  1.554 16.780

median val 24.20 27.053 11.971 42.445

While the estimated “true” value of the median point is close to its observed
value of 28.2, the Bayesian model correctly adjusted the estimated true value
for the minimum point from its observed value (-15.7) to a small but definitely
positive value. Of course, our estimates of the values of particular data points
have wide distributions — it would be too good to be true if we could use
MCMC to magically get rid of observation error.

*Because the data set has an even number of points, the median value is halfway between
the two values closest to the middle.
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6 Challenges

Multi-level models are hard to implement. General linear models like linear
regression represent one extreme, where you can put in any kind of data and
know that you will get a rapid, technically correct (if not necessarily sensible)
answer. Multi-level models represent the other extreme: the methods for fitting
them are computationally demanding and must be carefully tuned to a particu-
lar type of problem in order to ensure an efficient and correct solution. As with
analytical solutions, if you are not ready for a technical challenge your best bet
is to find a pre-built solution for your class of models. Another issue we have to
face as we incorporate more levels of variability, is ¢dentifiability. Unidentifiable
parameters are those that are impossible to estimate separately from our data.
For example, if we tried to estimate a linear model with two different intercepts
(Y = a1 +az +bX), instead of the more sensible Y = a+bX, any answer where
a1 + az = a would fit equally well. We would have the same problem with two
predictor variables that were perfectly correlated. Similarly, there is no way to
identify catchability — the probability that you will observe an individual —
from a single observational sample; you simply don’t have the information to
estimate how many animals or plants you failed to count. Most of these cases
of “perfect” unidentifiability are easily detectable by common sense, although
they can be obscured by complex models. Always remember that there is no
free lunch: if a procedure for estimating parameters seems too good to be true,
be suspicious.

Weak identifiability is more common than perfect unidentifiability. Weakly
identifiable parameters are hard to estimate even with large, clean data sets
— and practically impossible to estimate with moderate-size noisy data sets.
Identifiability problems are not limited to multi-level models, but they are par-
ticularly common there. Weak identifiability is related to a lack of statistical
power; it means that your model is structured in such a way that it will take an
enormous amount of data, or very extreme kinds of data, in order to have the
power to tell different ecological processes apart.

The best outcome of analyzing an unidentifiable or weakly identifiable model
is for your estimation procedure to crash: at least you will know something is
wrong. The worst outcome is for your estimation procedure to give you a wrong
answer, or one that depends sensitively way on the details of your numerical
algorithm or your prior. Weak identifiability in MLE analysis leads either to
numerical problems or to apparently well-defined, but misleadingly precise, an-
swers; weak identifiability in MCMC analyses leads to poor convergence. In the
worst case, chains may move through parameter space so slowly that it’s hard
to see that they are not converging. The best defenses against identifiability
problems are (1) care and common sense in defining models (always remember
the “no free lunch” principle), (2) examining model diagnostics — confidence
intervals, convergence statistics, and the difference between prior and posterior
distributions — and (3) running models with known inputs (i.e. simulations),
with different amounts of data and different amounts of noise, to see when they
are actually capable of getting the right answers.
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Coming to grips with the difficulty of separating different types of variability,
like coming to grips with limitations on statistical power (Chapter ??), can be
sobering. Schnute (1994) says in a paper on state-space models (one kind of
multi-level models) that

[tJhe outcome of the analysis often depends critically on the val-
ues of [many variance] parameters, and it is generally impossible to
estimate all of them ... Statistically, the likelihood surface [may be]
“flat”, i.e. insensitive to large parameter changes. In cases like this, a
large number of conflicting scenarios appear equally consistent with
the known data, and the analyst has no objective means to choose
among them.

This apparent limitation can be turned into an advantage ... State
space model design forces essential questions to be asked about un-
derlying processes, observed data, and sources of variability. When
these questions are answered honestly, the model may point to sce-
narios consistent with the data but in conflict with the prevailing
view. If so, the modeling effort can help to delineate the limits of
current knowledge and to establish rational priorities for future data
collection.

Put another way, acknowledging the many different types of uncertainty that
actually exist in our models may make us realize that we know less than we
thought we did about the possible dynamics of our study system, and may
drive us to make more observations, or more useful kinds of observations.

7 Conclusion

Why then are multi-level models worth so much effort?

They are clearly the wave of the future in ecological statistics. Books like
Gelman and Hill (2006) and Clark (2007), along with a rapidly growing col-
lection of papers in ecology and statistical ecology, demonstrate these models’
potential for understanding ecological processes. We know that ecological sys-
tems are variable at every level, and multi-level models give us a framework
for estimating this variability at multiple levels rather than lumping it into a
single error term. Our statistical models should match our conceptual models
as closely as possible. If we are interested in the differences among individu-
als or sites or genotypes, we would often be satisfied with knowing the amount
of variability among groups rather than trying to estimate a value for every
individual.

Furthermore, estimating the variability in this way is potentially more par-
simonious than estimating fixed effects for every individual or group. While
fixed effects requires an additional parameter for every additional group in the
model, estimating variability takes only a single parameter (the variance) no
matter how many groups there are*. Kenward and Roger (1997)

*Statisticians are still deeply divided about the correct way to count the number of effective
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While multi-level models are hard to implement and computationally chal-
lenging, things are getting better. Computers are faster every year, and infras-
tructure like grid computing is making it easier to access computing power be-
yond your desktop (Wang et al., 2005). Tools for both Bayesian and maximum-
likelihood estimation are constantly improving, both in the power and breadth
of algorithms available and in the convenience, interoperability, and robustness
of software (Skaug and Fournier, 2006; Kerman and Gelman, 2006).

Multi-level models are data-hungry. If you are a typical ecological exper-
imenter with a small, noisy data set, you may not be able to apply multi-
level models to your data set (Clark et al., 2005). On the other hand, if you
have a large, but very noisy, data set, then multi-level models may be the per-
fect tool. Because of data collection tools such as data loggers, remote sens-
ing, radiotelemetry, and climate proxies, and data synthesis tools such as web
databases, meta-analysis, and citizen science initiatives, more and more ecolo-
gists are finding themselves with data sets that are appropriate for multi-level
modeling. Knowing how to use multi-level models, and knowing what dangers
to avoid, will help you ask many more interesting questions about your data.

R supplement

Numerical integration

Here’s a function that calculates the likelihood for a given value of the error (e)
and the parameters and the observed value (the integrand in (17)):

> tmpf = function(eps, shape, scale, sd, x) {

+ exp(dnorm(eps, mean = 0, sd = sd, log = TRUE) +
+ dgamma (x - eps, shape = shape, scale = scale,
+ log = TRUE))

+ }

Check that it gives a reasonable value (at least not an NA) for the first data
point:

> tmpf(1, shape = 3, scale = 10, sd = 1, x = x.obs[1])
[1] 0.0002398506

Integrate numerically, using integrate:

parameters associated with a random-effect term. The answer certainly lies between 1 (the
variance) and n — 1 (the number of parameters required to estimate the differences of each
group from the first), and the possible difference can be huge for models containing interaction
terms. For a fixed effect model, an interaction between two factors with m and n factor levels
has (m — 1)(n — 1) degrees of freedom, while the random effect model might require as few
as 1. Some researchers have suggested rules for calculating or estimating the number, but
the question is still open (Kenward and Roger, 1997; Spiegelhalter et al., 2002; Burnham and
Anderson, 2004, p. 315; Lee et al., 2006).

21



> il = integrate(f = tmpf, lower = -Inf, upper = Inf,
+ shape = 3, scale = 10, sd = 1, x = x.obs[1])
> il$value

[1] 0.0009216708

To calculate the integral for more than one data point at a time, we have to
be careful and use sapply: if we just try to stick in a vector for x in tmpf, R
will do the wrong thing.

> tmpf2 = function(x, shape, scale, sd) {

+ integrate(f = tmpf, lower = -Inf, upper = Inf,

+ shape = shape, scale = scale, sd = sd, x = x)$value
+

> getdist = function(shape, scale, sd, dat, debug = FALSE) {
+ v = -sum(log(sapply(dat, tmpf2, shape = shape,

+ scale = scale, sd = sd)))

+ if (debug)

+ cat (shape, scale, sd, v, "\n")

+ v

+ }

Try this function for one set of reasonable parameters:
> getdist(shape = 3, scale = 10, sd = 1, dat = x.obs)
[1] 5684.876

Now run mle2 and confint to estimate the parameters and confidence in-
tervals:

> m1 = mle2(minuslogl = getdist, start = list(shape = 3,
+ scale = 10, sd = 1), data = list(dat = x.obs),

+ method = "Nelder-Mead")

> ml.ci = confint(m2)
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