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The Classical Isoperimetric ProblemAmong all simple closed curves in the plane R2 with a given perimeter L, which has thelargest area A?

I In R3 , we ask for the solid body Ω ⊂ R3 with given surface area which encloses thelargest volume.
I One can ask the same question in Rd , d ≥ 4, by properly defining d-dimensionalvolume and (d − 1)-dimensional surface area.
I This is a problem in shape optimization, part of the area of mathematics known asthe Calculus of Variations.



Ancient Greece
For the ancients, mathematics meant geometry, and universal and/or optimal forms wererevered.Theorem (Zenodorus (200-140 BCE))

I Among regular polygons having the same perimeter, more sides yields more area
enclosed.

I For any regular polygon, the circle with the same perimeter has greater area.

Zenodorus took it as obvious that a regular polygon contain more area than any otherpolygon with the same number of sides and the same perimeter. This is not difficult toshow.



Zenodorus’ method
For a regular polygon, draw in the apothem, which is the perpendicular segmentconnecting the center to any side.The apothem is the height of the isosceles triangle shown.

The typical form of all the quadratic equations in Babylonian mathematics was: Given is the
perimeter, x + y = a, and the area, xy = b ; to find the length, x , and the breadth, y. . . . The
great probability is, in the writer’s opinion, that the origin of this archaic type of quadratic
equations is to be seen as the effect of the aforementioned schemes of those who tried to cheat
the plain man in the computation of the capacity of the area.

Zenodorus’s polygon proof. We will now see how Zenodorus proved that a circle
has greater area than any polygon with the same perimeter.

Theorem. For regular polygons with the same perimeter, more sides imply greater
area.

Proof. Consider the apothem, the radius-like perpendicular drawn from the center to
a side (see Figure 1).

Figure 1.

Half the product of the apothem by the fixed perimeter yields the area of the polygon:

=

Figure 2.

The apothem is the height of the triangle in Figure 3:

Figure 3.

If we increase the number of sides, the base of the triangle in Figure 3 is shortened
and the angle is decreased. It is clear that its height increases. We would prove this by
trigonometry; Zenodorus had to rely on the usual pretrig bag of tricks. It is routine for
us, and it probably was for Zenodorus as well.

We would all be very surprised if this next theorem did not follow from the previous
one, but Zenodorus’s proof is so delightful that we include it anyway.

Theorem. A circle has greater area than any regular polygon with the same perimeter.

Proof. Archimedes proved that the cut-and-roll area formula also holds for the circle
(Figure 4).

=

Figure 4.
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The area of the polygon is half of the apothem times perimeter:
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The inscribed circle has smaller perimeter but its radius = apothem of the polygon; thecircle with the same perimeter will have a larger radius, hence larger area.So we must show that the apothem of any regular polygon is shorter than the radius
of the circle with the same perimeter. Rescale the polygon so that it circumscribes the
circle (Figure 5):

Figure 5.

The perimeter is now greater than the perimeter of the circle, and therefore greater than
before the scaling. Thus the scaling was a magnification, with the apothem magnified
to the size of the radius of the circle.

And now comes the key theorem. Following Zenodorus, we tacitly assume that
among all n-gons with given perimeter there is (at least) one that has greater area than
all the others. We will say more about this later.

Theorem. A regular n-gon has greater area than all other n-gons with the same
perimeter.

Proof. Among isoperimetric triangles with the same base, the isosceles triangle covers
the greatest area,

>

Figure 6.

so the maximal n-gon must be equilateral. Otherwise we could improve on it by mak-
ing it equilateral.

Figure 7.

We now know that the maximal n-gon must be equilateral. Suppose that it is not
equiangular. Consider two dissimilar triangles like those in Figure 8:

Figure 8.

Now make them similar by redistributing perimeter from the pointy to the blunt angle
until the two angles are the same, as shown in Figure 9:

Figure 9.
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Jakob Steiner (1796-1863)
Steiner gave five different proofs of the following solution ofthe Isoperimetric problem:

Theorem (Steiner (1842))
If C is a simple closed curve in the plane and C is not a circle, then there is a different
simple closed curve C ′ with the same perimeter containing a larger area.

I Steiner’s methods are all geometrical and constructive: he assumes that C is anon-circular curve, then deforms it so that it increases the area.
I Each is based on the symmetries of the circle, mainly reflections in lines whichdivide the perimeter of the curve exactly in half.
I The device of comparing a domain with its reflection in a line or plane has been usedin many contexts:

I Alexandroff (1955): method of reflection in planes in differential geometry;
I Serrin (1971), Gidas-Ni-Nirenberg (1979): extension of Alexandroff method to showsymmetry of solutions to PDE

I Steiner neglected one detail: why does there exist a “best” isoperimetric curve at all?



The Isoperimetric Inequality
More modern treatments of the Isoperimetric Problem reformulate it as an inequality:Theorem (Isoperimetric Inequality)
Let Ω ⊂ R2 be a simple planar domain with perimeter L, containing area A. Then,

L2 ≥ 4πA,

with equality holding if and only if the boundary curve is a circle.

I The dual problem: the circle is also the curve which has the smallest perimetercontaining a given area.
I The Isoperimetric Problem is rephrased as a problem in Calculus and Analysis!
I Parametrize the curve C = ∂Ω via ~r (t) = (x (t), y (t)), t ∈ [0, 1], with ~r (0) = ~r (1).Then, by calculus and Green’s Theorem,

L = ˆ 1

0

√(x ′(t))2 + (y ′(t))2 dt , A = 1
2

ˆ
C

x dy − y dx = 1
2

ˆ 1

0
[xy ′ − x ′y ] dt .

Hurwitz (1902) proved Isoperimetric Inequality using Fourier Series and Parseval’sIdentity.



The Calculus of Variations
Among all closed curves ~r (t) = (x (t), y (t)), t ∈ [0, 1], with given perimeter
L(~r ) = ˆ 1

0

√(x ′(t))2 + (y ′(t))2 dt , find the curve which maximizes area,
A(~r ) = ˆ 1

0
(xy ′ − x ′y ) dt

Make a variation of the curve, ~r (t) + ε~v (t), for ε > 0.If ~r maximizes area among all curves, then it shouldbe a maximum among these variations in ε .
Using the method of Lagrange Multipliers, there is a constant λ (the Lagrange multiplier!)for which a constrained maximizer of area A(~r ) must satisfy:

d
dε [A(~r + ε~v )− λL(~r + ε~v )] = 0 when ε = 0.,

for any choice of variation curve ~v (t). . .



One may then derive the “critical point” equations for this maximization problem. They area system of ODE, the Euler-Lagrange equations,
d
dt

(
y (t) + λ x ′(t)√(x ′(t))2 + (y ′(t))2

) = 0,

d
dt

(
x (t)− λ y ′(t)√(x ′(t))2 + (y ′(t))2

) = 0.

As ~r (t) may be parametrized by arclength (ie, speed √(x ′(t))2 + (y ′(t))2 = 1), theseequations may be simplified to
y + λx ′ = b, x − λy ′ = a, for constants a, b.

With X = (x − a), Y = (y − b), we get
Y = −λX ′, X = λY ′ =⇒ X = λ cos t − t0

λ , Y = λ sin t − t0
λ ,

a circle, radius λ.
Karl Weierstrass (1879) proved the existence of maximizers using techniques of realanalysis and the calculus of variations.



The Double Bubble
Here’s a variation on the Isoperimetric Problem: find two disjoint regions Ω1,Ω2 in theplane, each of prescribed area, A(Ω1) = a1 > 0, A(Ω2) = a2 > 0, so that they are enclosedby curves of least total perimeter.
By placing them in contact, they may reducecombined perimeter
This problem was solved in 1993 by a team of undergraduate students at WilliamsCollege (Mass.)Theorem (Alfaro, Brock, Foisy, Hodges, & Zimba)
For any given areas a1, a2 > 0, the two-region isoperimetric problem is solved by a
unique “standard double-bubble”: each boundary arc is circular, and the arcs meet at an
angle of 120o .

This result was extended to any finite number of regions with prescribed areas, byMorgan & Wichiramala (2002).



The Triple Bubble!
This is a simulation of the “gradient flow” of the perimeter: in time it reduces perimeter tofind the minimizer. (Chong Wang, 2018)
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Inhibitory systems and patterns
Many models of pattern formation work through two competing mechanisms:

I “Activation”, a term which is locally attractive which encourages concentration;
I “Inhibition”, a term which is long range or non-local and which promotesfragmentation.



A Nonlocal Isoperimetric Problem
For any set Ω ⊂ R2 with finite area and perimeter, define an energy,

E (Ω) = Per(Ω) + γ
¨

Ω
[¨

Ω G(x , y ) dx
]

dy , A(Ω) = M

I The first term is perimeter, which we know is minimized for Ω = disk.
I The second term involves a Green’s function, which is used in the solution ofLaplace’s equation.
I This term is non-local as it involves integration over the set Ω.
I As G(x , y )→ +∞ as y → x , this term is repulsive, it wants to split Ω into smallpieces and move them far away from each other.
I The second term is maximized when Ω = disk.
I Which term wins when we minimize E (Ω) over all possible sets Ω ⊂ R2?



Dilute mixtures, or the leopard’s spots
Replace R2 by periodic boundary conditions on a large box (ie, a 2D torus.)When the area of Ω is small, and γ is large, Choksi & Peletier (2010) proved that thishappens:
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Two-color spots
There is a form of energy for the 2-region Nonlocal Isoperimetric Problem [Ren-Wei(2012), A-Bronsard-Lu-Wang (2019)]
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