Math 3TP3 Truth and Provability Term 1 Autumn 2014-2015 Assignment 6 due December 3, 2014

1) Write a Turing machine program to compute the function $f(x, y)=x+y$. Your program should assume that it begins with a tape that contains only the values of x and y (in binary, of course) separated by one B, and that it is scanning the first 1 of the input x. It should end with the scanner looking at the first 1 of the output $x+y$. First write the algorithm, then list the quadruples of the program.
2) Show that the decidability of the generalised word problem for groups $w_{1}=w_{2}$, where w_{1} and w_{2} are words in a finitely presented group, is equivalent to the specific problem $w_{1}=1$.
3) Write $\mathbb{Z}[i]$ for the complex integers; that is, the complex numbers $a+b i$ where both a and b are integers. Show that if there were an algorithm to decide $p(X)=0$, where $p(X)$ is a polynomial over $\mathbb{Z}[i]$ and the solution is sought in $\mathbb{Z}[i]$, then there would also be an algorithm to solve Hilbert's Tenth Problem. Deduce that solvability for polynomials in $\mathbb{Z}[i]$ is undecidable.
