Practice Problems for Midterm II

Math 2R03 Autumn 2007-08

1) Define the following terms: linear transformation, kernel, image, one-to-one, onto, isomorphism, invariant subspace, eigenspace, characteristic polynomial.
2) Let $T: V \rightarrow V$ be a linear operator, and let u, v be eigenvectors in V associated to different eigenvectors. Prove that $\{u, v\}$ is linearly independent.
3) Let $T: \mathbf{P}_{2} \rightarrow \mathbf{P}_{2}$ be the linear transformation defined by $T(p(x))=p(x)+p(-x)$. Find $\operatorname{ker}(T)$ and $\operatorname{im}(T)$.
4) Calculate the change-of-basis matrix $P_{B \leftarrow E}$ where E is the standard basis and B is the basis $\left\{1, x-2, x^{2}+3\right\}$ for \mathbf{P}_{2}. Use $P_{B \leftarrow E}$ to express $p(x)=a+b x+c x^{2}$ in the basis B.
5) Find the matrix $M_{E B}$ for the linear transformation in problem 3), where B is the basis in 4).
6) Consider $A=\left(\begin{array}{ccc}11 & -4 & -5 \\ 21 & -8 & -11 \\ 3 & -1 & 0\end{array}\right)$. Find the eigenvalues of A. For each eigenvalue, find its generalised eigenspace. Show directly that each generalised eigenspace is an invariant subspace. Find a basis of \mathbf{R}^{3} with respect to which A has block diagonal form, and each block is upper triangular. Find the matrix P such that $P^{-1} A P$ is the block diagonal matrix of A.
