Practice Problems for Midterm 1 Math 2R03 Autumn 2007–08

1) Give the precise definition of the following phrase: a set of vectors in a vector space V is a basis for V.

2) State whether the following is TRUE or FALSE: If u is in the span of $\{v_1, \ldots, v_n\}$ then $\{u, v_1, \ldots, v_n\}$ is dependent.

3) With careful reference to the axioms for a vector space, show that (01)v = -v for any vector v in a vector space.

4) Let X, Y be subsets of a vector space V such that $\operatorname{span}(X) = \operatorname{span}(Y) = V$. Is it necessarily the case that $x \cap Y \neq \emptyset$? Justify your answer.

5) Find a basis for \mathbb{R}^4 which contains the following set of vectors: $\{(0,0,3,2), (0,1,7,4)\}$. Justify your answer.

6) Consider $U = \{p(x) \in \mathbf{P}_4 : p(x) = p(-x) \text{ for all } x \in \mathbf{R}\}$. Show that U is a subspace. Find a basis for U, and hence its dimension.

7) Let V be the set of 2×2 matrices with equal column sums. Show that V is a subspace of \mathbf{M}_{22} . Find a basis for V and calculate its dimension.

1

8) Find a basis for \mathbf{M}_{22} consisting of matrices with the property that $A^2 = A$.