Practice Problems for Midterm 1
 Math 2R03 Autumn 2007-08

1) Give the precise definition of the following phrase: a set of vectors in a vector space V is a basis for V.
2) State whether the following is TRUE or FALSE: If u is in the span of $\left\{v_{1}, \ldots, v_{n}\right\}$ then $\left\{u, v_{1}, \ldots, v_{n}\right\}$ is dependent.
3) With careful reference to the axioms for a vector space, show that (01) $v=-v$ for any vector v in a vector space.
4) Let X, Y be subsets of a vector space V such that $\operatorname{span}(X)=\operatorname{span}(Y)=V$. Is it necessarily the case that $x \cap Y \neq \emptyset$? Justify your answer.
5) Find a basis for \mathbf{R}^{4} which contains the following set of vectors: $\{(0,0,3,2),(0,1,7,4)\}$. Justify your answer.
6) Consider $U=\left\{p(x) \in \mathbf{P}_{4}: p(x)=p(-x)\right.$ for all $\left.x \in \mathbf{R}\right\}$. Show that U is a subspace. Find a basis for U, and hence its dimension.
7) Let V be the set of 2×2 matrices with equal column sums. Show that V is a subspace of \mathbf{M}_{22}. Find a basis for V and calculate its dimension.
8) Find a basis for \mathbf{M}_{22} consisting of matrices with the property that $A^{2}=A$.
