Math 1C03 Introduction to Mathematical Reasoning Term 2 Winter 2014–2015 Problem Sheet 8: complex numbers to be completed by Monday March 16 2015

- 1) Review calculations with complex numbers in both cartesian and polar coordinates by doing problems selected from Exercise Set 8 on pages 218–221 of the text.
- 2) Let z, w be any complex numbers.
 - a) Prove that |zw| = |z||w| (this is trivial when z and w are written in polar form; it requires a bit more algebra to show when they are given in cartesian coordinates).
 - b) Give an example that shows that, in general, $|z + w| \neq |z| + |w|$.
 - c) Describe $\{z : |z+2| = |z|+2\}$ as a subset of the complex plane.
 - d) Describe $\{z : |z + 3i| = |z| + |3i|\}$ as a subset of the complex plane.
 - e) Describe $\{z : |z+2+3i| = |z|+|2+3i|\}$ as a subset of the complex plane.
 - f) Generalise: describe $\{z : |z + u + vi| = |z| + |u + vi|\}$, for any complex number w = u + vi.
- 3) a) Describe $\{z \in \mathbb{C} : |z| = 10\}.$
 - b) Describe $\{z \in \mathbb{C} : |z 4| = 10\}.$
 - c) Describe $\{z \in \mathbb{C} : |z (4+3i)| = 10\}.$
 - d) Generalise: describe $\{z \in \mathbb{C} : |z (u + vi)| = r\}$, for any $u + vi \in \mathbb{C}$ and $r \in \mathbb{R}$.
- 4) The function $f(z) = \frac{az+b}{cz+d}$, where a, b, c, d are complex numbers with $ad bc \neq 0$ is called a *fractional linear transformation*.
 - a) Show that f is injective on its domain, which is $\{z \in \mathbb{C} : z \neq -d/c\}$.
 - b) Find the range of f.
 - c) A special case of a fractional linear transformation occurs when a = 1 and c = 0. Describe the effect of this fractional linear transformation geometrically and hence show that it maps a circle $\{z \in \mathbb{C} : |z - (u + vi)| = r\}$ to another circle of the same radius (what is the centre of this circle?).
- 5) Prove that the sum of the 5th roots of unity is equal to 0. Generalise.
- 6) The theory of integration of functions of a complex variable needs to be developed. Assume that it follows the same rules as integration of functions of a real variable, and calculate

$$\int e^{(a+ib)x} dx.$$

By considering real and imaginary parts, find $\int e^{ax} \cos(bx) dx$ and $\int e^{ax} \sin(bx) dx$. If you like, you can verify your answer by integrating by parts instead.