Math 1C03 Introduction to Mathematical Reasoning Term 2 Winter 2014-2015
 Problem Sheet 8: complex numbers to be completed by Monday March 162015

1) Review calculations with complex numbers in both cartesian and polar coordinates by doing problems selected from Exercise Set 8 on pages 218-221 of the text.
2) Let z, w be any complex numbers.
a) Prove that $|z w|=|z||w|$ (this is trivial when z and w are written in polar form; it requires a bit more algebra to show when they are given in cartesian coordinates).
b) Give an example that shows that, in general, $|z+w| \neq|z|+|w|$.
c) Describe $\{z:|z+2|=|z|+2\}$ as a subset of the complex plane.
d) Describe $\{z:|z+3 i|=|z|+|3 i|\}$ as a subset of the complex plane.
e) Describe $\{z:|z+2+3 i|=|z|+|2+3 i|\}$ as a subset of the complex plane.
f) Generalise: describe $\{z:|z+u+v i|=|z|+|u+v i|\}$, for any complex number $w=u+v i$.
3) a) Describe $\{z \in \mathbb{C}:|z|=10\}$.
b) Describe $\{z \in \mathbb{C}:|z-4|=10\}$.
c) Describe $\{z \in \mathbb{C}:|z-(4+3 i)|=10\}$.
d) Generalise: describe $\{z \in \mathbb{C}:|z-(u+v i)|=r\}$, for any $u+v i \in \mathbb{C}$ and $r \in \mathbb{R}$.
4) The function $f(z)=\frac{a z+b}{c z+d}$, where a, b, c, d are complex numbers with $a d-b c \neq 0$ is called a fractional linear transformation.
a) Show that f is injective on its domain, which is $\{z \in \mathbb{C}: z \neq-d / c\}$.
b) Find the range of f.
c) A special case of a fractional linear transformation occurs when $a=1$ and $c=0$. Describe the effect of this fractional linear transformation geometrically and hence show that it maps a circle $\{z \in \mathbb{C}:|z-(u+v i)|=r\}$ to another circle of the same radius (what is the centre of this circle?).
5) Prove that the sum of the 5 th roots of unity is equal to 0 . Generalise.
6) The theory of integration of functions of a complex variable needs to be developed. Assume that it follows the same rules as integration of functions of a real variable, and calculate

$$
\int e^{(a+i b) x} d x
$$

By considering real and imaginary parts, find $\int e^{a x} \cos (b x) d x$ and $\int e^{a x} \sin (b x) d x$. If you like, you can verify your answer by integrating by parts instead.

