Math 1C03 Introduction to Mathematical Reasoning Term 2 Winter 2014-2015

Problem Sheet 6: rationals as congruence classes, properties of functions to be completed by Monday March 22015

1) Recall that we defined the rational numbers formally as the set of congruence classes of pairs of integers (a, b), where $b \neq 0$:

$$
[(a, b)]=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}^{\neq 0}: a y=x b\right\}
$$

i) Prove that the definition of multiplication of rational numbers:

$$
[(a, b] \times[(c, d)]=[(a c, b d)]
$$

is well-defined. That is, if $[(a, b)]=\left[\left(a^{\prime}, b^{\prime}\right)\right]$ and $[(c, d)]=\left[\left(c^{\prime}, d^{\prime}\right)\right]$ then $[(a c, b d)]=\left[\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)\right]$.
ii) Consider the function $f: \mathbb{Q} \rightarrow \mathbb{Z}$ defined by $f([(a, b)])=a+b$. Prove that f is not well-defined (and hence I should not have called it a function).
2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=a x+b$, where a, b are any real numbers, $a \neq 0$. Prove that f is injective and surjective.
3) Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function defined by

$$
f(n)= \begin{cases}n+5, & \text { if } n \text { is even; } \\ n-5, & \text { if } n \text { is odd. }\end{cases}
$$

i) Calculate some values of f. Prove that, if $m \neq n$, then $f(m) \neq f(n)$ and hence f is injective (careful: you have three cases to consider).
ii) For different possible output values (say, $10,31,-1,-14$) what input values will give you these outputs? Prove that f is surjective (careful: you have to take an arbitrary integer x and find what integer n will map to it).
iii) Since f is bijective it has an inverse. Express the inverse function explicitly.
4) i) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is injective but not surjective.
ii) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is surjective but not injective.
iii) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is neither injective nor surjective.
iv) Give an example of a function $f: \mathbb{N} \rightarrow \mathbb{N}$ which is both injective and surjective.
v) Change the domain and range and repeat.

