Math 1C03 Introduction to Mathematical Reasoning Term 2 Winter 2014-2015

 Problem Sheet 5: strong induction, rational numbers and real numbers

 Problem Sheet 5: strong induction, rational numbers and real numbers to be completed by Monday February 232015 to be completed by Monday February 232015 (enjoy your Reading Week)

 (enjoy your Reading Week)}

1) The Fibonacci sequence is given by taking each element to be the sum of the preceding two. We can generalise this idea to get the so-called Tribonacci sequence: $T_{1}=T_{2}=T_{3}=1, T_{n}=$ $T_{n-1}+T_{n-2}+T_{n-3}$ for $n \geq 4$. We want to show that for all $n \in \mathbb{Z}^{+}, T_{n}<2^{n}$. Call this property $P(n)$.
i) Verify that $P(1), P(2)$ and $P(3)$ all hold.
ii) Verify that $P(4)$ holds by using the results in (i). (This step is not strictly necessary, but is helpful for getting an idea of how to do the general step.)
iii) Assume that $k \geq 4$ and that $P(i)$ holds for all $i \leq k$. Prove that $P(k+1)$ holds.
iv) Deduce by strong induction that $P(n)$ holds for all $n \in \mathbb{Z}^{+}$. (Notice that you needed all the information from (i) in your base case.)
2) i) Use Fermat's Little Theorem to prove that, for every prime p other than 2 or 5 there is some positive integer r such that $10^{r} \equiv 1 \bmod p$.
ii) Use Fermat's Little Theorem twice to prove that, for every pair of distinct primes p and q other than 2 or 5 , there is some positive integer r such that $10^{r} \equiv 1 \bmod p q$.
iii) Use (i) and the Binomial Theorem to prove that for any $1 \leq i \leq p$, there is some positive integer r such that $10^{r} \equiv 1 \bmod p^{i}$ (in fact, the same r works for all of these values of i). You will need the fact from Problem Sheet 4 that the binomial coefficient $\binom{p}{n}$ is divisible by p. Generalise to conclude that, for any power of p there is some positive integer r such that $10^{r} \equiv 1 \bmod p^{i}$.
iv) Any positive integer n can be factored as a product of distinct primes, $n=p_{1}^{m_{1}} \ldots p_{s}^{m_{s}}$. Prove by induction on s that if $\operatorname{gcd}(n, 10)=1$ then there is some positive integer r such that $10^{r} \equiv 1$ $\bmod n$. (The notation here will get somewhat cumbersome; if you prefer, you can just do the case when $m_{i}=1$ for all i.)
v) Look at the proof of Theorem 5.43 in the text. If the number $1 / n$ has a periodic decimal expansion with period s, then the remainders r_{i} in the calculation will satisfy $r_{i+s}=r_{i}$ for every i. Show that the period s satisfies $10^{s} \equiv 1 \bmod n$.
vi) Conclude that $1 / n$ has a periodic decimal expansion with period s if and only if s is the least positive integer such that $10^{s} \equiv 1 \bmod n$.
