Math 1C03 Introduction to Mathematical Reasoning
 Term 2 Winter 2014-2015
 Problem Sheet 4: proof by induction to be completed by Friday February 62015

1) Let $P(n)$ be the assertion $\sum_{i=1}^{n} i^{3}=\frac{1}{4} n^{2}(n+1)^{2}$. Prove that $P(n)$ is true for all $n \geq 1$.
2) i) Evaluate $\sum_{i=1}^{n} i \cdot i$! for $n=1,2,3,4,5$.
ii) Guess an expression for $\sum_{i=1}^{n} i \cdot i$!.
iii) Prove by induction that your formula works for all n.
3) Let $P(n)$ be the assertion that $8^{n}-3^{n}$ is divisible by 5 . Prove that $P(n)$ is true for all $n \geq 1$.
4) Let $P(n)$ be the assertion that $3^{2 n} \equiv 1 \bmod 8$. Prove that $P(n)$ is true for all $n \geq 1$.
5) i) Use the binomial theorem and induction to prove Fermat's Little Theorem in the form stated here: Fix a prime p. For any positive integer $n, n^{p} \equiv n \bmod p$.
ii) Deduce Fermat's Little Theorem in the form proved in class: $n^{p-1} \equiv 1 \bmod p$ if $p \nmid n$. Why is the hypothesis needed for this version, but not in i)?
6) Let $S_{n}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set with n elements.
i) List all subsets of S_{1}, S_{2}, S_{3} and S_{4}. How many subsets does each one have? (Remember that the empty set and the set itself are both subsets of a given set.)
ii) Find an organized way to list the subsets of S_{5}, given that you already have a list of the subsets of S_{4}. Do the same for S_{n+1}, assuming that you have a list of all subsets of S_{n}.
iii) Prove by induction that for every positive integer n, S_{n} has 2^{n} subsets.
