Math 1C03 Introduction to Mathematical Reasoning Term 2 Winter 2014–2015 Problem Sheet 4: proof by induction to be completed by Friday February 6 2015

1) Let P(n) be the assertion $\sum_{i=1}^{n} i^3 = \frac{1}{4}n^2(n+1)^2$. Prove that P(n) is true for all $n \ge 1$.

- 2) i) Evaluate $\sum_{i=1}^{n} i \cdot i!$ for n = 1, 2, 3, 4, 5.
 - ii) Guess an expression for $\sum_{i=1}^{n} i \cdot i!$.
 - iii) Prove by induction that your formula works for all n.
- 3) Let P(n) be the assertion that $8^n 3^n$ is divisible by 5. Prove that P(n) is true for all $n \ge 1$.
- 4) Let P(n) be the assertion that $3^{2n} \equiv 1 \mod 8$. Prove that P(n) is true for all $n \ge 1$.
- 5) i) Use the binomial theorem and induction to prove Fermat's Little Theorem in the form stated here: Fix a prime p. For any positive integer n, $n^p \equiv n \mod p$.
 - ii) Deduce Fermat's Little Theorem in the form proved in class: $n^{p-1} \equiv 1 \mod p$ if $p \nmid n$. Why is the hypothesis needed for this version, but not in i)?
- 6) Let $S_n = \{a_1, a_2, \dots, a_n\}$ be a set with *n* elements.
 - i) List all subsets of S_1 , S_2 , S_3 and S_4 . How many subsets does each one have? (Remember that the empty set and the set itself are both subsets of a given set.)
 - ii) Find an organized way to list the subsets of S_5 , given that you already have a list of the subsets of S_4 . Do the same for S_{n+1} , assuming that you have a list of all subsets of S_n .
 - iii) Prove by induction that for every positive integer n, S_n has 2^n subsets.