Math 1C03 Introduction to Mathematical Reasoning Term 2 Winter 2014–2015 Problem Sheet 3: congruences and modular arithmetic to be completed by Wednesday January 28 2015

- 1) Write down the definition of the statement $a \equiv b \mod m$. Then use the definition to decide if the following assertions of congruence are true or false.
 - i) $6 \equiv 5 \mod 4$
 - ii) $13 \equiv 3 \mod 3$
 - iii) $100 \equiv 25 \mod 4$
 - iv) $100 \equiv 25 \mod 15$
 - v) $1001 \equiv 12345 \mod 2$
 - vi) $-5 \equiv 5 \mod 3$
 - vii) $4^{51} \equiv 111111 \mod 2$
 - viii) $10! + 1 \equiv 9 \mod 7$
 - ix) $10! + 1 \equiv 82 \mod 9$
- 2) i) Suppose that $a \equiv b \mod m$. Prove that $a^2 \equiv b^2 \mod m$.
 - ii) Suppose that $a \equiv b \mod m$. Prove that $na \equiv nb \mod m$ for any positive integer n.
 - iii) Suppose that $a \equiv b \mod m$ and $a' \equiv b' \mod m$. Prove that $aa' \equiv bb' \mod m$.
- 3) Review Example 3.15 in the text. Use the same method to solve the following problems.
 - i) Find the remainder when 3^{111} is divided by 80.
 - ii) Find the remainder when $4^{23} \cdot 36^{11}$ is divided by 5.
- 4) i) Recall the statement of the quotient/remainer theorem when a is divided by m and when b is divided by m.
 - ii) Suppose that a and b have the same remainder when divided by m. Show that $a \equiv b \mod m$.
 - iii) Suppose that $a \equiv b \mod m$. Show that a and b have the same remainder when divided by m.
- 5) Fix a prime number p.
 - i) Use the euclidean algorithm to prove that for every integer m with $1 \le m < p$ there is a unique integer n with $1 \le n < p$ such that $[m]_p[n]_p = [1]_p$.
 - ii) Find $[(p-1)!]_p$ for p = 5 and p = 7.
 - iii) In general, the product $[(p-1)!]_p$ has how many factors?
 - iv) Find $[(p-1)!]_p$ in general.
 - v) Deduce Wilson's Theorem: $(p-1)! \equiv -1 \mod p$.