Math 1C03 Introduction to Mathematical Reasoning
 Term 2 Winter 2014-2015
 Problem Sheet 3: congruences and modular arithmetic to be completed by Wednesday January 282015

1) Write down the definition of the statement $a \equiv b \bmod m$. Then use the definition to decide if the following assertions of congruence are true or false.
i) $6 \equiv 5 \bmod 4$
ii) $13 \equiv 3 \bmod 3$
iii) $100 \equiv 25 \bmod 4$
iv) $100 \equiv 25 \bmod 15$
v) $1001 \equiv 12345 \bmod 2$
vi) $-5 \equiv 5 \bmod 3$
vii) $4^{51} \equiv 111111 \bmod 2$
viii) $10!+1 \equiv 9 \bmod 7$
ix) $10!+1 \equiv 82 \bmod 9$
2) i) Suppose that $a \equiv b \bmod m$. Prove that $a^{2} \equiv b^{2} \bmod m$.
ii) Suppose that $a \equiv b \bmod m$. Prove that $n a \equiv n b \bmod m$ for any positive integer n.
iii) Suppose that $a \equiv b \bmod m$ and $a^{\prime} \equiv b^{\prime} \bmod m$. Prove that $a a^{\prime} \equiv b b^{\prime} \bmod m$.
3) Review Example 3.15 in the text. Use the same method to solve the following problems.
i) Find the remainder when 3^{111} is divided by 80 .
ii) Find the remainder when $4^{23} \cdot 36^{11}$ is divided by 5 .
4) i) Recall the statement of the quotient/remainer theorem when a is divided by m and when b is divided by m.
ii) Suppose that a and b have the same remainder when divided by m. Show that $a \equiv b \bmod m$.
iii) Suppose that $a \equiv b \bmod m$. Show that a and b have the same remainder when divided by m.
5) Fix a prime number p.
i) Use the euclidean algorithm to prove that for every integer m with $1 \leq m<p$ there is a unique integer n with $1 \leq n<p$ such that $[m]_{p}[n]_{p}=[1]_{p}$.
ii) Find $[(p-1)!]_{p}$ for $p=5$ and $p=7$.
iii) In general, the product $[(p-1)!]_{p}$ has how many factors?
iv) Find $[(p-1)!]_{p}$ in general.
v) Deduce Wilson's Theorem: $(p-1)!\equiv-1 \bmod p$.
