

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

On the normality of negative interest rates

M. R. Grasselli

Mathematics and Statistics - McMaster University Based on joint work with Alex Lipton

Arts and Sciences Guest Lecture October 27, 2017

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Select Central Bank Policy Rates 2010-2016

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

Major Reserve Currencies: Effective Marginal Policy Rates, 2010-2016 (Percent)

Source: Bloomberg, L.P.; and Haver Analytics. Note: Policy rates used for each country are the following: EA: deposit rate; US: Fed funds rate; UK: O/N interbank rate; Japan: deposit rate.

Source: Bloomberg, L.P.; and Haver Analytics. Note: Policy rates used foreach country are the following: SWE: reverse repo rate; DEN: certificates of deposit rate; HUN: deposit rate; BGR deposit rate; CHE: deposit rate.

(日)、

Why was it deemed necessary?

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

Sources: Datastream and Desjardins, Economic Studies

イロアスロアス ヨアメヨア 三目 つんぐ

Stated reasons

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

- Denmark: counter safe-haven inflow and exchange rate pressure.
- Euro area: price stability.
- Hungary: price stability and counter exchange rate pressure.
- Japan: price stability.
- Norway: price stability.
- Sweden: price stability.
- Switzerland: counter safe-haven inflow and exchange rate pressure.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

How was NIRP greeted?

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

- Keynesian economists view it as a poor substitute for fiscal policy.
- Robert Skidelsky (2016): "the real case against negative interest rates is the folly of relying on monetary policy alone to rescue economies from depressed conditions".
- Austrian economists view it as the latest attempt of government take over of the economy.
- Frank Hollenbeck (2016): "radical monetary policy that will only ensure an ever greater misalignment between output and demand".

How is a rate cut supposed to work in positive territory?

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

- Reduction in bank deposit and lending rates: cheaper short-term funding from the central bank plus competition leads to lower costs passed to clients via lower lending rates. Shift from short-maturity liquid assets with lower returns increases price of riskier, illiquid assets, further lowering lending rates. Competition from wholesale funding and support of margins leads to lower deposit rates.
- Increase in aggregate demand: because firms typically borrow to invest, lower lending rates lead to more investment. Provided the lost interest income does not lead to lower consumption (as richer households typically save more anyway), this boosts aggregate demand and therefore inflation.
- Currency depreciation: incentive for moving capital to higher-yield jurisdictions.

Effects of policy rate changes (1955-2015)

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

FRED - (Effective Federal Funds Rate-Inflation, consumer prices for the United States)-(Bank of England Policy Rate in the United Kingdomb-Consumer Price Inflation in the United Kingdomb) (left)

What's different in negative territory?

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

- The existence of cash (with zero gross nominal rate of return) provides a "physical lower bound" (PLB), lower than then zero lower bound (ZLB), but bounded nonetheless.
- This prevents deposits from following the policy rate into negative territory.
- Reputational risk and consumer behaviour make banks even more hesitant to pass negative rates to deposits.
- If lending rates decrease because the policy rate goes negative, this reduces bank profitability.
- Banks would then reduce lending to protect capital ratios.
- This creates an "economic lower bound", lower than the ZLB but higher than the PLB.
- See Brunnermeier and Koby (2016).

How did it work? IMF Policy Paper (August 2017)

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

Conclusions

CBDC

- Deposit rates remained positive (with the exception of large deposits in Denmark, Sweden, and Switzerland).
- Lending rates declined as expected (with the exception of Switzerland for a brief period, then normalized).
- Bank profits remained constant (higher lending volumes, fees and commissions, capital gains, lower provisioning costs).

- Mixed results on exchange rates.
- No evidence of cash hoarding.
- Outlook for inflation and growth remains subdued

Effects of NIRP on deposit and lending rates

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

Effects of NIRP on exchange rates

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

Exchange Rates relative to Euro

(Index, time t = 100, day before introduction of negative deposit rates)

Source: Haver Analytics. Note: the x-axis shows monthly intervals.

Exchange Rates relative to U.S. Dollar (Index, time t=100, day before introduction of negative deposit rates)

Source: Haver Analytics. Note: the x-axis shows monthly intervals.

・ロト ・ 理ト ・ ヨト ・ ヨト

э

Effects of NIRP on inflation

* Excluding food and energy in the euro zone, Switzerland and Denmark. Excluding the cost of mortgage interest in Sweden.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Sources: Datastream and Desjardins, Economic Studies

What would you expect from such modestly negative rates?

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

Major Reserve Currencies: Effective Marginal Policy Rates, 2010-2016 (Percent)

Source: Bloomberg, L.P.; and Haver Analytics. Note: Policy rates used for each country are the following: EA: deposit rate; US: Fed funds rate; UK: O/N interbank rate; Japan: deposit rate.

Source: Bloomberg, L.P.; and Haver Analytics. Note: Policy rates used foreach country are the following: SWE: reverse repo rate; DEN: certificates of deposit rate; HUN: deposit rate; BGR deposit rate; CHE: deposit rate.

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

SFC table for Keen (1995) model

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

	Households		Firms	Banks	Gov	Sum
Balance Sheet						
Capital stock		+pK				+pK
Deposits	$+\Delta$			$-\Delta$		0
Loans		-Λ		$+\Lambda$		0
Bills	+B				-B	0
Sum (net worth)	X _h	X _f		X _b	Xg	pК
Transactions		current	capital			
Consumption	-pC	+pC				0
Gov Spending		+pG			-pG	0
Capital Investment		+pI	-pl			0
Accounting memo [GDP]		[pY]				
Wages	+W	-W				0
Taxes		-pT			+pT	0
Depreciation		$-p\delta K$	$+p\delta K$			0
Interest on deposits	$+r_d\Delta$			$-r_d\Delta$		0
Interest on loans		$-r\Lambda$		$+r\Lambda$		0
Interest on Bills	$+r_g B$				$-r_g B$	0
Dividends	$+\Pi_b$			$-\Pi_b$		0
Financial Balances	Sh	Sf	$-p(I - \delta K)$	Sb	Sg	0
Flow of Funds						
Change in Capital Stock		$+p(I - \delta K)$				$+p(I - \delta K)$
Change in Deposits	$+\dot{\Delta}$			—À		0
Change in Loans		—À		+Å		0
Change in Bills	$-\dot{B}$				$+\dot{B}$	0
Column sum	Sh		Sf	Sb	Sg	$p(I - \delta K)$
Change in net worth	Sh	S	+ þK	Sb	Sg	<i>pK</i> + <i>p</i> Ḱ

Table: SFC table for the Keen model.

Fiscal and monetary policies

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

• Assume a fiscal stance of the form

$$G = gY$$

 $T = tY$

where g and t are positive constants.Government debt then evolves as

$$\dot{B}=pG-pT+r_{g}B.$$

• In addition, let the monetary policy be

$$\dot{\rho} = \eta_{g} \left(\frac{\dot{K}}{K} - \alpha - \beta \right)$$
$$\dot{r}_{g} = \eta_{r} (\rho - r_{g}),$$

where η_r, η_g are non-negative constants and $(\alpha + \beta)$ is the potential output growth.

Growth and investment

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

• Assume that $Y = K/\nu$ and that

$$\dot{K} = I - \delta K.$$

Moreover, let I = κ(π)Y, for an increasing function κ(·) of the profit share π defined as

$$\pi = \frac{\prod_{p}}{pY} = 1 - \omega - t - r\ell,$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

where $\omega = W/(pY)$ and $\ell = \Lambda/(pY)$.

Inflation, wages, employment and bank rates

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

For the wage-price dynamics we assume that

$$rac{\dot{p}}{p} = \eta_p(m\omega - 1) := i(\omega)$$
 $rac{\dot{w}}{w} = \Phi(\lambda) + \gamma i(\omega).$

for $m \ge 1$, $\eta_p \ge 0$, and $\gamma \in \mathbb{R}$. • Let $\lambda = Y/(aN)$ be the employment rate, where

$$\dot{a}/a = \alpha, \qquad \dot{N}/N = \beta.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Set
$$r_d = r_g$$
 and $r = r_g + \delta_r$.

The full dynamical system

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

The entire model reduces to the following system of differential equations:

 $\begin{cases} \dot{\omega} = \omega \left[\Phi(\lambda) - \alpha - (1 - \gamma)i(\omega) \right] \\ \dot{\lambda} = \lambda \left[\frac{\kappa(\pi)}{\nu} - \delta - \alpha - \beta \right] \\ \dot{\ell} = \ell \left[r_g + \delta_r - \frac{\kappa(\pi)}{\nu} + \delta - i(\omega) \right] + \omega + t + \kappa(\pi) - 1 \\ \dot{\rho} = \eta_g \left(\frac{\kappa(\pi)}{\nu} - \delta - \alpha - \beta \right) \\ \dot{r}_g = \eta_r (\rho - r_g) \end{cases}$

Interior equilibrium

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

• It is easy to see that an interior equilibrium is given by

$$\overline{\omega}_{1} = 1 - \overline{\pi}_{1} - t - (\overline{r}_{0} + \delta_{r})\overline{\ell}_{1} \overline{\lambda}_{1} = \Phi^{-1}[\alpha + (1 - \gamma)i(\overline{\omega}_{1})] \overline{\ell}_{1} = \frac{\kappa(\overline{\pi}_{1}) - \overline{\pi}_{1}}{\alpha + \beta + i(\overline{\omega}_{1})} \overline{r}_{g} = \overline{\rho}$$

where $\overline{\pi}_1 := \kappa^{-1}(\nu(\alpha + \beta + \delta)).$

• Moreover, we find that this equilibrium induces an asymptotic government debt ratio of the form

$$\overline{b}_1 = rac{g-t}{i(\overline{\omega}_1) + lpha + eta - \overline{r}_g}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Numerical examples

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

$$\Phi(\lambda) = a + rac{b}{(1-\lambda)^2}, \qquad \kappa(\pi) = c + \exp(d + e\pi)$$

Symbol	Value	Description
а	-0.0401	constant term in Phillips curve
b	0.0001	coefficient phillips curve
с	-0.0065	constant term in investment function
d	-5	affine term in exponent of investment function
е	20	coefficient in exponent of investment function
т	1.3	markup factor
α	0.025	growth rate in productivity
β	0.02	growth rate in labour force
γ	0.8	money illusion coefficient
δ	0.03	depreciation rate
η	0.35	inflation relaxation parameter
ν	3	capital to output ratio

Table: Baseline parameters

Convergence in a Keen model without monetary policy (moderate initial debt)

- On the normality of negative interest rates
- M. R. Grasselli
- Introduction
- Effects of negative interest rates
- A SFC model with negative interest rates
- CBDC
- Conclusions

Figure: $\ell_0 = 0.6$, $g = t = \eta_r = \eta_g = 0$ and r = 0.03.

三 のへで

(日)、

Explosive behaviour in a Keen model without monetary policy (high initial debt)

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

Figure: $\ell_0 = 6$, $g = t = \eta_r = \eta_g = 0$ and r = 0.03.

SAC

э

Convergence in a Keen model with monetary policy (moderate initial debt)

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

Figure: $\ell_0 = 0.6$, g = 0.2, t = 0, $\delta_r = 0.03$, $\eta_r = 0.1$ and $\eta_g = 0.2$.

Stabilizing monetary policy (high initial debt)

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

Figure: $\ell_0 = 6$, g = 0.2, t = 0, $\delta_r = 0.03$, $\eta_r = 0.1$ and $\eta_g = 0.2$.

Stabilizing monetary policy (even higher initial debt)

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

Figure: $\ell_0 = 8$, g = 0.2, t = 0, $\delta_r = 0.03$, $\eta_r = 0.1$ and $\eta_g = 0.2$.

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

• As we have seen, effective monetary policy might require interest rates that are lower than the physical lower bound imposed by the existence of cash.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

• As we have seen, effective monetary policy might require interest rates that are lower than the physical lower bound imposed by the existence of cash.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Proposals for going lower than this bound include:

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

- As we have seen, effective monetary policy might require interest rates that are lower than the physical lower bound imposed by the existence of cash.
- Proposals for going lower than this bound include:
 - taxing cash: medieval demurrage or modern stamp script (Gesell (1906), Fisher (1945) and Goodfriend (2000)).

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

- As we have seen, effective monetary policy might require interest rates that are lower than the physical lower bound imposed by the existence of cash.
- Proposals for going lower than this bound include:
 - taxing cash: medieval demurrage or modern stamp script (Gesell (1906), Fisher (1945) and Goodfriend (2000)).
 - breaking the parity between bank deposits and cash: bank deposits become the unit of account, but the central bank does not guarantee its parity with cash, which can appreciate in times of negative interest rate, that is, the deposit price of cash would be above par (Eisler (1932), Buiter (2009), Kimball (2015), Agarwal and Kimball (2015) and Goodfriend (2016)).

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

- As we have seen, effective monetary policy might require interest rates that are lower than the physical lower bound imposed by the existence of cash.
- Proposals for going lower than this bound include:
 - taxing cash: medieval demurrage or modern stamp script (Gesell (1906), Fisher (1945) and Goodfriend (2000)).
 - Dereaking the parity between bank deposits and cash: bank deposits become the unit of account, but the central bank does not guarantee its parity with cash, which can appreciate in times of negative interest rate, that is, the deposit price of cash would be above par (Eisler (1932), Buiter (2009), Kimball (2015), Agarwal and Kimball (2015) and Goodfriend (2016)).
 - abolishing cash: electronic currency issued by the central bank (Rogoff (2014), Barrdear and Kumhof (2016)).

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

• Direct liabilities of the central bank, as safe as cash.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

- Direct liabilities of the central bank, as safe as cash.
- Central bank can pay or charge interest on electronic currency just as it does today on electronic reserve balances held by commercial banks.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

- Direct liabilities of the central bank, as safe as cash.
- Central bank can pay or charge interest on electronic currency just as it does today on electronic reserve balances held by commercial banks.
- Co-exit with conventional bank deposits, which pay a market rate above that paid by the central bank on electronic currency (just as is the case with cash today).

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

- Direct liabilities of the central bank, as safe as cash.
- Central bank can pay or charge interest on electronic currency just as it does today on electronic reserve balances held by commercial banks.
- Co-exit with conventional bank deposits, which pay a market rate above that paid by the central bank on electronic currency (just as is the case with cash today).
- The central bank guarantees the convertibility of bank deposits into electronic currency at par (again, just like cash today).

On the normality of negative interest rates

M. R. Grasselli

- Introduction
- Effects of negative interest rates
- A SFC model with negative interest rates

CBDC

Conclusions

- Direct liabilities of the central bank, as safe as cash.
- Central bank can pay or charge interest on electronic currency just as it does today on electronic reserve balances held by commercial banks.
- Co-exit with conventional bank deposits, which pay a market rate above that paid by the central bank on electronic currency (just as is the case with cash today).
- The central bank guarantees the convertibility of bank deposits into electronic currency at par (again, just like cash today).
- Main difficulty is to make it linked to a "currency card" (similar to a gift card today) that provides: anonymity, divisibility, generalized purchasing power, portability, safety, and a store of value (Goodfriend (2006)).

On the normality of negative interest rates

M. R. Grasselli

- Introduction
- Effects of negative interest rates
- A SFC model with negative interest rates

CBDC

Conclusions

- Direct liabilities of the central bank, as safe as cash.
- Central bank can pay or charge interest on electronic currency just as it does today on electronic reserve balances held by commercial banks.
- Co-exit with conventional bank deposits, which pay a market rate above that paid by the central bank on electronic currency (just as is the case with cash today).
- The central bank guarantees the convertibility of bank deposits into electronic currency at par (again, just like cash today).
- Main difficulty is to make it linked to a "currency card" (similar to a gift card today) that provides: anonymity, divisibility, generalized purchasing power, portability, safety, and a store of value (Goodfriend (2006)).
- Enter cryptocurrencies: see Lipton (2016, 2017).

Conclusions

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

- There is nothing special about negative interest rates.
- The existence of cash imposes a physical lower bound.
- This restricts governments to modestly negative rates, with correspondingly modest results.
- Fighting economic crises requires a multitude of tools and approaches.
- Dismissing negative rates as either absurd or ineffective seems counterproductive.
- Timid experimentation, however, only leads to confusion.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you!

On the normality of negative interest rates

M. R. Grasselli

Introduction

Effects of negative interest rates

A SFC model with negative interest rates

CBDC

Conclusions

(日) (個) (目) (目) (目) (目)