Name:
Student number: \qquad
ARTSCI 1D06

DAY CLASS
DURATION OF EXAMINATION 2.5 Hours
MCMASTER UNIVERSITY FINAL EXAMINATION - PRACTICE VERSION
THIS EXAMINATION PAPER INCLUDES n QUESTIONS ON m PAGES. YOU ARE RESPONSIDLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE. BRING ANY DISCREPANCY TO THE ATTENTION OF YOUR INVIGILATOR.

Special instructions: Answer all the questions in the space provided.
If you need more paper, ask the invigilator.
Use of Casio-FX-991 calculator only is permitted.
This paper must be returned with your answers.

Solutions

1)

a) State the Mean Value Theorem.

Set f be a funtrin whilis catiminem a $[a, b]$ ad Upentitle o (a, b). Then then in sure $c \in(a, b)$ with

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

b) State the limit comparison test for convergence of the series $\sum_{n=1}^{\infty} a_{n}$.

Assume $a_{n} \geq 0 \mathrm{fm}$ all n. Let $b_{n} \sum_{n=1} h$ anoth neyneme with $b_{n}>0 \mathrm{fo}$ allan. a_{k} Y $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ is finite, mon-zeur, the $\sum a_{n}$ and $\sum b_{n}$ either both eqverge a both during.
c) Let l ' be the point with cartesian coordinates $(-3,-4)$. Find polar coordinates for P.

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}=\sqrt{9+16}=\sqrt{25}=5 . \\
& \tan \theta=\frac{y}{x}=-\frac{4}{-3} \\
& \arctan \left(\frac{4}{3}\right)=0.927 \text { (radian) }
\end{aligned}
$$

But $A_{i}=$ thuil quasar, ar ogle whole be

$$
\pi+0.927
$$

d) Solve the separable differential equation $\frac{d y}{d x}=y^{2} x^{2}, y(0)=1$.

$$
\begin{array}{ll}
\frac{d y}{y^{2}}=\int x^{2} d x & y(0)=1=\frac{1}{-\frac{1}{3} \cdot 0 a-c}=-\frac{1}{c} \\
-y^{-1}=\frac{1}{3} x^{3}+C & y=-1
\end{array}
$$

e) State the definition of the integral of the function $f(x)$ on the interval $[a, b]$ as the limit of Riemann sums.

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{1}
$$

$$
\text { a he } \Delta x=\frac{b-c}{n}
$$

and x_{i}^{*} i a most: the it ital of with 0_{x} fum
f) Sketch the contour map for the function $z=x^{2}-9 y^{2}$ (you should indicate at least 3 level sets).

$$
\begin{aligned}
& x^{2}-9 y^{2}=0 \Rightarrow x= \pm 37 \\
& x^{2}-9 y^{2}=1 \text { gore though }(\pm 1,0) \\
& x^{2}-9 y^{2}=-1 \text { goes thong }\left(0, \pm \frac{1}{3}\right)
\end{aligned}
$$

$r=4$ malians contact,

$$
\begin{aligned}
& \theta \text { ag wee } \\
& \text { giros acids, min } 4
\end{aligned}
$$

Page 3 of 10
h) Find x_{3} when Newton's method is used to approximate a zero of the function $f(x)=x-\cos (x)$ with starting point $x_{1}=\pi / 4$.

$$
\begin{aligned}
& x_{n+1}=\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} x_{n} \quad f^{\prime} / x_{1} 1=1+\sin (x) \\
& \begin{array}{l}
x_{1}=\frac{\pi}{4}, \quad x_{2}=\frac{\pi}{4}-\frac{\frac{\pi}{4}-\cos \left(\frac{\pi}{4}\right)}{1+\operatorname{si}\left(\frac{\pi}{4}\right)}=\frac{\pi}{4} 40.7395
\end{array} \\
& \partial_{3}=0.7395-\frac{0.7395-\cos (0.735 \mathrm{r})}{1+\infty(0.7355)=0.7391}
\end{aligned}
$$

i) The direction field for the system of differential equations $\frac{d x}{d t}=-500 x+x y, \frac{d y}{d t}=200 y-2 x y$ is
given. Sketch the solution curve starting at the point given. Sketch the solution curve starting at the point $x=\frac{d t}{100}, y=250$.

j) A contour map for the surface $z=f(x, y)$ is given. Find the approximate coordinates of the points where $f_{x}=0$ and the points where $f_{y}=0$.

$$
\begin{aligned}
& f_{x}=0 \text { when } y=0, x=\arg \text { th. } \\
& f_{y}=0 \text { an } x=0, y=\operatorname{ary} \text { the. }
\end{aligned}
$$

Page 4 of 10
2) Let $f(x, y)=\frac{2 x y}{x^{2}+y^{2}}$.
a) Show that this function is not continuous at the origin.

$$
\begin{aligned}
& \text { Fix } x=0 \quad \lim _{(0, y) \rightarrow(0,0)} f(x, y)=\lim _{\operatorname{rin}}^{0+y^{2}}=0 . \\
& \text { Fix } x=y \quad \lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{x \rightarrow 0} \frac{2 x^{2}}{x^{2}-x^{2}}=\lim _{x \rightarrow 0} 1=1 .
\end{aligned}
$$

as the two lite ane ant equal, the
b) Find f_{x} and f_{y}, for $(x, y) \neq(0,0)$.

$$
\begin{aligned}
f_{x} & =\frac{\left(x^{2}+y^{2}\right) 2 y-2 x y(2 x)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{-2 x^{2} y+2 y^{3}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$ lint at $(0,0)$ dos $n t$ witt, is fantom. is At entrinions of $(0,0)$.

$$
\begin{aligned}
f_{y} & =\frac{\left(x^{2}+y^{2}\right) 2 x-2 x y(2 y)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{2 x^{3}-2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

c) Find all second order partial derivatives and verify that $\int_{x y}=f_{y x}$.

$$
\begin{aligned}
& f_{x x}=\frac{\left(x^{2}+y^{2}\right)^{2}(-4 x y)-\left(-2 x^{2} y+2 y^{3}\right) 2\left(x^{2}+y^{2}\right) 2 x}{\left(x^{2}+y^{2}\right)^{4}} \\
& f_{x y}=\frac{\left(x^{2}+y^{3}\right)^{2}\left(-2 x^{2}+6 y^{2}\right)-\left(-2 x^{2}+2 y^{3}\right) 2\left(x^{2}+y^{2}\right) 2 y}{\left(x^{2}+y^{2}\right)^{4}} \\
& f_{y y}=\frac{\left(x^{2}+y^{2}\right)^{2}(-4 x y)-\left(2 x^{3}-2 x y^{2}\right) 2\left(x^{2}+y^{2}\right)^{2 y}}{\left(x^{2}+y^{2}\right)^{4}} \\
& f_{y x}=\frac{\left(x^{2}+y^{2}\right)^{2}\left(6 x^{2}-2 x y\right)-\left(2 x^{3}-2 x y^{2}\right) 2\left(x^{2}+y^{2}\right) 2 x}{\left(x^{2}+y^{2}\right)^{4}}
\end{aligned}
$$

Some dyefurn shows $f_{x y}=\frac{\left(x^{2}+y^{2}\right)\left(-2 x^{4}-2 y^{4}+12 x^{2} y^{2}\right) \text { Page } 5 \text { of } 10}{\left(x^{2}+y^{2}\right)^{4}}=f_{y} x$
3) The graph of the curve parametrized by $x=e^{\cos \theta}, y=e^{\sin \theta}$ is shown. Find the exact value of the coordinates where the tangent line to the curve is horizontal, and the exact coordinates of the point where the tangent line is vertical.

$$
\begin{aligned}
& \frac{d y}{d \theta}=\frac{d y}{d x} \cdot \frac{d y}{d \theta}, x \\
& \frac{d y}{d x}=\frac{d y \theta \theta}{d x / 2 \theta} .
\end{aligned}
$$

triegntel hgt. him when

$$
\frac{d_{1}^{\prime}}{d \theta}=0 \quad a^{\frac{1}{1 \theta}} \neq 0 .
$$

$$
\begin{aligned}
& \frac{d y}{d \theta}=e^{\sin \theta} \cdot \cos \theta=0 \quad \text { when } \quad \cos \theta=0 \\
& \theta: \frac{\pi}{2}+n \pi . \\
& \frac{d x}{d \theta}=e^{\cos \theta} \cdot(-\sin \theta)=0 \quad \text { when } \quad i \theta=0 \\
& \theta=n \pi .
\end{aligned}
$$

Ifingtiot tap lime when $\theta=\frac{\pi}{7}+4 \pi, w \quad x=e^{0}=1$

$$
\begin{aligned}
& y=e^{\sin \left(\frac{\pi}{2}\right)} a y=e^{\sin \left(\frac{3 x}{2}\right)} \\
& y=e^{1} \quad \text { a } y=e^{-1}
\end{aligned}
$$

Vectinil tat him when $\theta=n \pi$, io $y=e^{0}=1$.

$$
\begin{aligned}
& x=e^{\cos (0)} \text { an } x=e^{e_{0}(x)} \\
& x=e^{-1} \text { in } x=e^{-1} \text { Page } 6 \text { of } 10
\end{aligned}
$$

4) Solve the initial-value problem $y^{\prime}+4 x y=x, \quad y(0)=1$.
fuien fint-ank, wher with citegiting forton.

$$
\begin{aligned}
I(x)=e^{\int 4 x d x} & =e^{2 x^{2}} \\
e^{2 x^{2}} y^{\prime}+e^{2 x^{2}} \cdot 4 x y & =x e^{2 x^{2}} \\
\frac{d}{d x}\left(e^{2 x^{2}} y\right) & =x e^{2 x^{2}} \\
m \quad \int \frac{d}{d x}\left(e^{2 x^{2}}\right) d x & =\int x e^{2 x^{2}} d x \\
e^{2 x^{2}} y & =\frac{1}{4} e^{2 x^{2}}+C \\
y & =\frac{1}{4}+C e^{-2 x^{2}} \\
y(0)=1 & =\frac{1}{4}+C e^{0}=\frac{1}{4}+C \\
C=\frac{3}{4} \cdot y & =\frac{1}{4} e^{2 x^{2}}+\frac{3}{4}
\end{aligned}
$$

5)

a) Find the Taylor series for the function $f(x)=\ln (1+2 x)$ (do not quote a known Taylor series).

$$
\begin{aligned}
& T(x)=\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(0) x^{n} \\
& f(x)=2(1+2 x) \\
& f(0)=\operatorname{an}(1)=0 . \\
& f^{\prime}(x)=\frac{1}{1+2 x}-2 \\
& f^{\prime}(0)=\frac{2}{1}=2 \\
& f^{\prime \prime}(x)=\frac{-14}{(1+2 x)^{\prime 2}} \cdot 2.2 \quad f^{\prime \prime}(0)=-2.2 \\
& f^{\prime \prime \prime}(x)=\frac{(-1)(-2)}{(1+2 x) y} \cdot 2.2 .2 \quad f^{\prime \prime}(0)=\left(-2 x+x^{2}\right)(-1)(-2)\left(2^{3}\right) \\
& f^{(n)}(x)=\frac{(-2)(-3)(-4) \cdot(-1)(n-1)}{(1+2 x)^{n}} 2^{n+\infty} f^{(n)}(0)=(-1)^{n-1} 2 \cdot 3 \ldots(n-1) 2^{n} \\
& \text { b) Find the radius of convergence for the above series. } \\
& \text { The Rein Let. } \\
& \text { c) Find the interval of convergence for the series. } \\
& \text { Radinind dupe in } \frac{1}{2} \quad x<\frac{1}{2}
\end{aligned}
$$

$\partial=\frac{1}{2} T\left(\frac{1}{2}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ whit canarese os i attainting hamenim nerve.

$$
x=-\frac{1}{2} \quad\left(-\frac{1}{2}\right)=\sum_{n=1}^{\infty}\left(-\frac{1)^{n-1}}{n} \cdot 2^{n}\left(-\frac{1}{2}\right)^{n}=\sum_{n=1}^{\infty} \frac{1}{n}\right. \text { whit avenge, }
$$

\& io harmonic versus.
Go conferral of comengermer is $\left(-\frac{1}{2}, \frac{1}{2}\right]$.
6) The goal of this problem is to justify the integral test for convergence of a series. Let $\left\{a_{i}\right\}$ be a sequence of positive terms and assume that f is a continuous, non-negative decreasing function with $a_{i}=f(i)$ for all i.
a) Write L_{n} for the Riemann sum with left endpoints and $\Delta x=1$ which approximates the integral

$$
\int_{1}^{n+1} f(x) d x
$$

where n is any integer greater than 1 . (Here is the picture.)

Express L_{n} as a finite sum.

$$
L_{n}=\sum_{i=1}^{n} f(i) \cdot 1=\sum_{i=1}^{n} a_{i}
$$

b) Compare the series $\sum_{i=1}^{n} a_{i}$ with the integral $\int_{1}^{n+1} f(x) d x$ to find a lower bound for $\sum_{i=1}^{n} a_{i}$.

Tran therition $L_{n}>\int_{1}^{n+1} f(x) d x$, wo

$$
\sum_{i=1}^{n} a_{i}>\int_{i}^{n+1} f(x) d x
$$

c) Write R_{n} for the Riemam sum with right endpoints and $\Delta x=1$ which approximates the integral

$$
\int_{1}^{n+1} f(x) d x
$$

where n is any integer greater than 1 . Express $R_{n 2}$ as a sum.

$$
R_{n}=\sum_{i=2}^{n+1} f(i)=\sum_{i=2}^{n+1} a_{i}
$$

d) Compare the series with the integral to find an upper bound for $\sum_{i=1}^{n} a_{i}$.

Fran the picture, $\sum_{i=2}^{n+1} a_{i}<\int_{1}^{n+1} f(x) d x$

$$
\sum_{i=1}^{n} a_{i}=a_{i}+\sum_{i=2}^{n+1} a_{i}-a_{n+1}<\int_{1}^{n+1} f(x) d_{x}+a_{1}-a_{n+1}
$$

e) Use these bounds on $\sum_{i=1}^{n} a_{i}$ to deduce the statement of the integral test.
as

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} & >\int_{1}^{n+1} f(x) d_{1}, w \lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}
\end{aligned}>\lim _{n \rightarrow \infty} \int_{1}^{n+1} f(x) b_{i} x+\left(H d i n, \quad \sum_{i=1}^{\infty} a_{i} \geqslant \int_{1}^{\infty} f(x) d_{1} . \quad .\right.
$$

Mhos, if the simper item dweigs, so dos the seines.

$$
\begin{aligned}
& a_{2} \quad \sum_{i=1}^{n} a_{i}<\int_{1}^{n+1} f(x) d x+a_{1}-a_{n+1} \\
& \\
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i} \leq \lim _{n \rightarrow \infty} \int_{1}^{n+1} f(x) d x+a_{1}-\lim _{n \rightarrow \infty}\left(a_{n+1}\right)
\end{aligned}
$$

