ArtSci 1D06 Calculus
 Full year 2015-2016
 Instructor: D. Haskell
 Winter Midterm - PRACTICE
 Thursday 11 February 2016 18:45-20:15

Instructions There are six questions on seven pages. Answer all the questions in the space provided. If you need more paper, ask the invigilator.

NAME:
ID NUMBER:
TUTORIAL DAY AND TIME

Problem	Points
$\mathbf{1}[10]$	
$2[6]$	
$3[6]$	
$4[6]$	
$5[6]$	
$6[6]$	
Total $[40]$	

1) $[10$ points]
a) State precisely what it means to say that the sequence $\left\{a_{n}\right\}$ diverges.
b) State precisely what it means to say that the sequence $\left\{a_{n}\right\}$ is decreasing.
c) State precisely what it means to say that the series $\sum_{n=0}^{\infty} a_{n}$ diverges.
d) State precisely what is meant by the interval of convergence of the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$.
e) State precisely what it means to say that the series $\sum_{n=0}^{\infty} a_{n}$ converges absolutely.
2) [6 points]
a) State the comparison test for convergence of the series $\sum_{n=0}^{\infty} a_{n}$.
b) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+2 n}$ converges.
c) Use a partial fraction decomposition to find the exact value of the series in b).
3) $[6$ points $]$
a) Use the power series $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$, for $|x|<1$ to find a power series representation for the function $f(x)=\frac{1}{1+x^{2}}$, and hence a power series representation for $g(x)=\arctan (x)$.
b) What is the interval of convergence of the series for $g(x)$?
c) Deduce the exact value of the alternating series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$.
4) [6 points] Express the repeated decimal number
1.616161 ...
as a fraction by summing an appropriate geometric series.
5) $[6$ points $]$
a) Write the formula for the Taylor series around a for a function $f(x)$.
b) Use your answer to a) to find the Taylor series for the function $f(x)=(1-3 x)^{1 / 2}$ around 0 . (Do not just quote a known Taylor series.)
6) $[6$ points]
a) State the divergence test.
b) Let $\left\{a_{n}\right\}$ be a decreasing sequence such that $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{2}$. Write $s_{m}=\sum_{n=1}^{m} a_{n}$. Find a lower bound for s_{m} (this will depend on m). Deduce that $\sum_{n=1}^{\infty} a_{n}$ diverges (thus verifying the divergence test for this example).
