Arts & Science 1D06 Quiz #8

28 January 2016

Full Name:	SOLUTIONS	Student # :

TA: Max Lazar

Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.

[4 marks]

(1) Use the comparison test to decide if the series
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
 converges

If we notice that $n^n \ge n^2$ for every natural number n, then we get that $\frac{1}{n^n} \le \frac{1}{n^2}$. Now since $\sum \frac{1}{n^2}$ is a convergent p-series (p = 2), we can conclude by the comparison test that $\sum \frac{1}{n^n}$ is also convergent.

[3 marks] (2) Given that
$$\frac{1}{n} \le a_n$$
 for every *n*, what can we say about the convergence of $\sum_{n=1}^{\infty} a_n$?

By the comparison test, since $\sum \frac{1}{n}$ diverges, $\sum a_n$ must diverge as well.

[3 marks] (3) Given that $0 \le b_n \le \frac{1}{n}$ for every *n*, what can we say about the convergence of $\sum_{n=1}^{\infty} b_n$?

Given the information we have about b_n , we can't conclude anything about its convergence, since we only know that it is a series of positive terms, bounded above by the harmonic series, which diverges.

 $\sum b_n \text{ could be divergent (e.g. if } b_n = \frac{1}{n} \text{ for each } n) \text{ or it could be convergent (e.g. if } b_n = \frac{1}{2^n} \text{ for each } n).$