Full Name: \qquad Student \# : \qquad
TA: \qquad
Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.
[5 marks]
(1) Use the comparison test to prove that this series diverges:

$$
\sum_{n=1}^{\infty} \frac{(4+\sin (n))^{n}}{2^{n}}
$$

The goal is to show that the series in question is larger than some other divergent series. Well, we know that $\sin (n)>-1$ for any n. This means that:

$$
\sum_{n=1}^{\infty} \frac{(4+\sin (n))^{n}}{2^{n}}>\sum_{n=1}^{\infty} \frac{(4-1)^{n}}{2^{n}}=\sum_{n=1}^{\infty} \frac{3^{n}}{2^{n}}
$$

The latter is a geometric series with $r=\frac{3}{2}>1$, so it diverges. Thus, by the comparison test, $\frac{(4+\sin (n))^{n}}{2^{n}}$ diverges too.
[5 marks] (2) Use the limit comparison test to show that this series converges.

$$
\sum_{n=1}^{\infty} \frac{2^{n}+\ln (n)}{3^{n}}
$$

As $n \rightarrow \infty$, this series most resembles $\sum \frac{2^{n}}{3^{n}}$, which is a convergent geometric series. Taking the limit of the ratio of these two series:

$$
\lim _{n \rightarrow \infty} \frac{2^{n}+\ln (n)}{3^{n}} \frac{3^{n}}{2^{n}}=\lim _{n \rightarrow \infty} \frac{2^{n}+\ln (n)}{2^{n}}=\lim _{n \rightarrow \infty} 1+\frac{\ln (n)}{2^{n}}
$$

Let's consider the real-valued limit $\lim _{x \rightarrow \infty} \frac{\ln (x)}{2^{x}}$ and use l'Hôpital's Rule:

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{2^{x}} \stackrel{\stackrel{\text { L'Hôp }}{\stackrel{\downarrow}{=}}}{=}=\lim _{x \rightarrow \infty} \frac{1}{x \ln (2) 2^{x}}=0 .
$$

So, as $n \rightarrow \infty$, the ratio between $\frac{2^{n}+\ln (n)}{3^{n}}$ and $\frac{2^{n}}{3^{n}}$ is 1 . But the latter are the terms of a convergent series, which means by the limit comparison test that $\sum_{n=0}^{\infty} \frac{2^{n}+\ln (n)}{3^{n}}$ converges.

