Full Name: \qquad Student \# : \qquad
TA: \qquad
Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.
[10 marks] (1.) Determine whether the following series are convergent or divergent.
(a) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{3}-3}}$ Hint: Use the limit comparison test

This series is similar to $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{3}}}$, a convergent p-series, since $p=3 / 2>1$.
$\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n^{3}-3}}}{\frac{1}{\sqrt{n^{3}}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{3}}}{\sqrt{n^{3}-3}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{3}}}{n^{\frac{3}{2}} \sqrt{1-\frac{3}{n^{3}}}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1-\frac{3}{n^{3}}}}=1$
Since 1 is a positive, finite number, $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{3}}}$ and $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{3}-3}}$ share the same property. So $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{3}-3}}$ is convergent as well.
(b) $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{3}+1}$ Hint: Use the comparison test

This looks similar to $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$, a convergent p-series with $p=3$, so we would suspect it behaves the same way.
$n^{3}+1>n^{3}$, so $\frac{1}{n^{3}+1}<\frac{1}{n^{3}}$, and $0 \leq \cos ^{2} n \leq 1$.
So $\frac{\cos ^{2} n}{n^{3}+1} \leq \frac{1}{n^{3}+1}<\frac{1}{n^{3}}$.
Since $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{3}+1}$ is less than a known convergent series, we can conclude that this series converges as well by the comparison test.

