Full Name: SOLUTIONS
Student \# : \qquad

TA:_ Max Lazar
Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.
[6 marks] (1) Consider the sequence

$$
\left\{0,-\frac{3}{4}, \frac{8}{8},-\frac{15}{16}, \frac{24}{32},-\frac{35}{64}, \cdots\right\}
$$

(a) [3] Find an expression for the general term in the sequence, a_{n}.

$$
a_{n}=(-1)^{n+1} \frac{n^{2}-1}{2^{n}}
$$

(b) [3] Does the sequence converge? If so, to what value does it converge?

Consider the sequence with terms $\left|a_{n}\right|=\frac{n^{2}-1}{2^{n}}$. If $\left|a_{n}\right| \rightarrow 0$, then we also know that $a_{n} \rightarrow 0$. We'll want to use L'Hôpital's Rule to show $\left|a_{n}\right| \rightarrow 0$, so we'll switch to a continuous function: $f(x)=\frac{x^{2}-1}{2^{x}}$.

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-1}{2^{x}} \stackrel{\text { LH }}{=} \lim _{x \rightarrow \infty} \frac{2 x}{2^{x} \ln 2} \stackrel{\text { LH }}{=} \lim _{x \rightarrow \infty} \frac{2}{2^{x} \ln ^{2} 2}=0
$$

Thus we have $\left|a_{n}\right| \rightarrow 0$ and $a_{n} \rightarrow 0$ as well.
[4 marks] (2) Show that the following sequence is monotone decreasing. Does the sequence converge?

$$
\left\{n e^{-n}\right\}_{n=1}^{\infty}
$$

To show that the sequence is monotone decreasing, we'll consider $g(x)=x e^{-x}$.

$$
g^{\prime}(x)=e^{-x}-x e^{-x}=e^{-x}(1-x)<0 \text { when } x>1 .
$$

So we know that $g(x)$ is decreasing on $(1, \infty)$, which implies that our sequence is monotone decreasing. Since $\left\{n e^{-n}\right\}_{n=1}^{\infty}$ is a monotone decreasing sequence that is bounded (above by e^{-1} and below by 0), by the monotone convergence theorem, $\left\{n e^{-n}\right\}_{n=1}^{\infty}$ converges.

