Full Name: \qquad Student \# : \qquad

TA: \qquad
Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.
[3 marks]
[3 marks]
(2) Show that S is bounded.

This sequence is bounded above by 1 and below by -1 . We know that $(3 n-1)<3^{n}$ for all n, and since both sides of that inequality are positive, we can say:

$$
(3 n-1)<3^{n} \Longrightarrow \frac{3 n-1}{3^{n}}<1
$$

and

$$
(3 n-1)<3^{n} \Longrightarrow-\frac{3 n-1}{3^{n}}>-1 .
$$

In other words,

$$
-1<(-1)^{n+1} \frac{3 n-1}{3^{n}}<1
$$

and so S is bounded.

[2 marks]

(3) Is S convergent? If so, what does it converge to?

Yes, S is convergent to 0 . We know this because, if the absolute value of a sequence converges to zero, then the sequence as a whole converges to zero. And

$$
\lim _{n \rightarrow \infty}\left|(-1)^{n} \frac{3 n-1}{3^{n}}\right|=\lim _{n \rightarrow \infty} \frac{3 n-1}{3^{n}}=0
$$

since exponentials grow much faster than linear terms.
[2 marks]
(4) If a sequence is convergent, is the series formed by summing the terms of that sequence necessarily convergent?

No way! Consider the sequence $\{1,1,1, \ldots\}$ No doubt it's convergent, though the sum of all these terms goes off to ∞.

