January 13, 2016

 Full Name:
 Student # :_____

TA:

Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.

(1.) Consider the sequence [6 marks]

$$\Big\{-\frac{4}{3},1,-\frac{16}{27},\frac{25}{81},-\frac{36}{243},\ldots\Big\}$$

(a) Find a formula for the general term a_n of the sequence.

$$a_n = (-1)^n \frac{(n+1)^2}{3^n}$$

(b) Does the sequence converge? If so, to what value?

Yes, it converges to 0. Use that if $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$ and that we can relate limits of sequences to limits of functions.

$$\lim_{x \to \infty} \frac{(x+1)^2}{3^x} \stackrel{\text{L.H.}}{=} \lim_{x \to \infty} \frac{2(x+1)}{(3^x)(\ln 3)} \stackrel{\text{L.H.}}{=} \lim_{x \to \infty} \frac{2}{(3^x)(\ln 3)^2} = 0$$

So we have
$$\lim_{n \to \infty} \left| (-1)^n \frac{(n+1)^2}{3^n} \right| = \lim_{x \to \infty} \frac{(x+1)^2}{3^x} = 0 = \lim_{n \to \infty} (-1)^n \frac{(n+1)^2}{3^n}$$

(2.) Suppose you know that b_n is an increasing sequence and all its terms lie between the numbers 3 and 5.

(a) Explain why the sequence must have a limit.

Since b_n is an increasing sequence, $b_n < b_{n+1}$ for all $n \ge 1$. Because all its terms lie between 3 and 5, b_n is a bounded sequence. By the Monotonic Sequence Theorem, b_n is convergent, ie b_n has a limit, L.

(b) What can you say about the value of the limit? L must be greater than 3 since b_n is increasing, so $3 < L \leq 5$.

[4 marks]