Full Name: \qquad Student \# : \qquad
TA: \qquad
Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.
[6 marks] (1.) Consider the sequence

$$
\left\{-\frac{4}{3}, 1,-\frac{16}{27}, \frac{25}{81},-\frac{36}{243}, \ldots\right\}
$$

(a) Find a formula for the general term a_{n} of the sequence.

$$
a_{n}=(-1)^{n} \frac{(n+1)^{2}}{3^{n}}
$$

(b) Does the sequence converge? If so, to what value?

Yes, it converges to 0 . Use that if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$ and that we can relate limits of sequences to limits of functions.

$$
\lim _{x \rightarrow \infty} \frac{(x+1)^{2}}{3^{x}} \stackrel{\text { L.H. }}{=} \lim _{x \rightarrow \infty} \frac{2(x+1)}{\left(3^{x}\right)(\ln 3)} \stackrel{\text { L.H. }}{=} \lim _{x \rightarrow \infty} \frac{2}{\left(3^{x}\right)(\ln 3)^{2}}=0
$$

So we have $\lim _{n \rightarrow \infty}\left|(-1)^{n} \frac{(n+1)^{2}}{3^{n}}\right|=\lim _{x \rightarrow \infty} \frac{(x+1)^{2}}{3^{x}}=0=\lim _{n \rightarrow \infty}(-1)^{n} \frac{(n+1)^{2}}{3^{n}}$
[4 marks]
(2.) Suppose you know that b_{n} is an increasing sequence and all its terms lie between the numbers 3 and 5 .
(a) Explain why the sequence must have a limit.

Since b_{n} is an increasing sequence, $b_{n}<b_{n+1}$ for all $n \geq 1$. Because all its terms lie between 3 and $5, b_{n}$ is a bounded sequence. By the Monotonic Sequence Theorem, b_{n} is convergent, ie b_{n} has a limit, L.
(b) What can you say about the value of the limit?
L must be greater than 3 since b_{n} is increasing, so $3<L \leq 5$.

