Full Name: \qquad Student \# : \qquad
TA: \qquad
Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.
[5 marks] (1.) Which function is graphed below? Explain your answer.

(a) $f(x, y)=(x-y)^{2}$ (b) $f(x, y)=|x y|$ (c) $f(x, y)=|x|+|y|$ (d) $f(x, y)=\left(x^{2}-y^{2}\right)^{2}$

The function graphed is (d) $f(x, y)=\left(x^{2}-y^{2}\right)^{2}$. One way you can see this is by noting that the graph is 0 along the lines $y= \pm x$. This is only consistent with (d), as $f=0$ when $x^{2}+y^{2}=0$, or $y= \pm x$.
[5 marks] (2.) Explain why the following limit does not exist.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{4}+3 y^{4}}
$$

Along the path $x=0$:

$$
\lim _{(0, y) \rightarrow(0,0)} \frac{(0)\left(y^{2}\right)}{(0)^{4}+3 y^{4}}=0
$$

Along the path $y=x$:

$$
\lim _{(x, x) \rightarrow(0,0)} \frac{\left(x^{2}\right)\left(x^{2}\right)}{x^{4}+3 x^{4}}=\lim _{(x, x) \rightarrow(0,0)} \frac{x^{4}}{4 x^{4}}=\frac{1}{4}
$$

Since $0 \neq \frac{1}{4}$, we can conclude that the limit does not exist.

