Full Name \qquad Student \# : \qquad
TA: \qquad Max Lazar

Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.
[5 marks]
[5 marks]
(1) The astroid is a curve that can be parametrized by the equations

$$
\left\{\begin{array}{ll}
x=\cos ^{3}(t) \\
y & =\sin ^{3}(t)
\end{array} \quad 0 \leq t \leq 2 \pi\right.
$$

Sketch the astroid, given the above parametrization. Using this parametrization, would a particle travelling along the curve move in the clockwise direction?

Plotting a couple points (I used multiples of $\pi / 4$), we should get the shape to our left, with the direction of travel given by the arrows

Using this parametrization, a particle travelling along the curve would move in the counter-clockwise direction
(2) Consider the curve paramtrized by $x=e^{t}, y=t^{2}+t$, where t ranges over all real numbers. Where is the tangent to the curve horizontal?
To solve this question, we'll need to know where $\frac{d y}{d x}$ is zero. This is equivalent to checking that $\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0$ and is finite. Since $\frac{d x}{d t}=e^{t} \neq 0$ and is finite for any t, we can just look at $\frac{d y}{d t}$:

$$
\frac{d y}{d t}=2 t+1=0 \Leftrightarrow t=-\frac{1}{2}
$$

So the tangent to the curve is horizontal when $t=-1 / 2$, which is when

$$
(x, y)=\left(e^{-1 / 2},-1 / 4\right)
$$

