Full Name: \qquad Student \#: \qquad
TA:

Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.
(1) This question will deal with the parametric curve defined by

$$
x(t)=2 \cos (t), \quad y(t)=\sin (t) \quad, 0 \leq t \leq 2 \pi .
$$

(a) [4] Draw a rough sketch of the curve.

(b) [2] Use the parametric equations to compute $\frac{d y}{d x}$.

$$
\frac{d y}{d t}=\cos (t) \text { and } \frac{d x}{d t}=-2 \sin (t), \text { so } \frac{d y}{d x}=\frac{d y}{d t} \div \frac{d x}{d t}=-\frac{\cos (t)}{2 \sin (t)} .
$$

(c) [3] Eliminate the parameter t to get an explicit expression for y in terms of x, and use this to compute $\frac{d y}{d x}$ explicitly.
If we write $\frac{x}{2}=\cos (t)$ and $y=\sin (t)$, then $1=\cos ^{2}(t)+\sin ^{2}(t)=\left(\frac{x}{2}\right)^{2}+y^{2}$. Solving for y and taking the derivative, we get

$$
y=\sqrt{1-\frac{x^{2}}{4}} \Longrightarrow \frac{d y}{d x}=-\frac{2 x}{4} \frac{1}{2 \sqrt{1-\frac{x^{2}}{4}}}=-\frac{x}{4 y}
$$

(d) [1] Verify that your answers for (b) and (c) are the same.

Well, if we sub $x=2 \cos (t)$ and $y=\sin (t)$ into the answer from part (c), we get

$$
\frac{d y}{d x}=-\frac{2 \cos (t)}{4 \sin (t)}=-\frac{\cos (t)}{2 \sin (t)}
$$

which is precisely the answer for (b). Sweet!

