Full Name: \qquad Student \# : \qquad
TA: \qquad

Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.
[5 marks]
(1) Solve this differential equation to get an explicit expression for y.

$$
\frac{x}{y} y^{\prime}=x^{3}+1
$$

This is a separable equation, and we can write it like this:

$$
\frac{d y}{y}=\frac{x^{3}+1}{x} d x=\left(x^{2}+\frac{1}{x}\right) d x .
$$

Integrating both sides gives

$$
\ln (y)=\frac{x^{3}}{3}+\ln (x)+C
$$

where C is a constant. Taking e to the power of both sides yields

$$
y=\exp \left(\frac{x^{3}}{3}+\ln (x)+C\right)=e^{C} e^{\frac{x^{3}}{3}} e^{\ln (x)}=A e^{\frac{x^{3}}{3}} x
$$

[5 marks] (2) Solve this initial value problem.

$$
y^{\prime}=\sin (x)+y^{2} \sin (x)+x+y^{2} x, \quad y(0)=0
$$

Though this doesn't initially look separable, we can factor the right-hand side of the Diffy Q in a very cute way:

$$
y^{\prime}=\sin (x)\left(1+y^{2}\right)+x\left(1+y^{2}\right)=(\sin (x)+x)\left(1+y^{2}\right)
$$

and this allows us to separate the equation

$$
\frac{d y}{1+y^{2}}=(\sin (x)+x) d x
$$

and integrating both sides gives

$$
\arctan (y)=-\cos (x)+\frac{x^{2}}{2}+C \Longrightarrow y=\tan \left(-\cos (x)+\frac{x^{2}}{2}+C\right)
$$

To solve the initial value problem, I'll plug in $x=0$, which makes the right side $\tan (\cos (0)+$ $0+C)=\tan (C+1)$, which is equal to zero if $C=-1$.

