Full Name: \qquad Student \# : \qquad
TA: \qquad

Please provide detailed solutions to the problems below. Correct responses without justification may not receive full credit. The use of a calculator is permitted.
(1) Consider the function

$$
f(x)=e^{x} \cos (x)
$$

(a) [5] Compute the derivative, $f^{\prime}(x)$.

The function f is a product of two elementary functions: $g(x)=e^{x}$ and $h(x)=\cos (x)$. We can use the product rule to find the derivative. The product rule says that $(g h)^{\prime}=$ $g^{\prime} h+h g^{\prime}$. Applying this to our function gives:

$$
\begin{aligned}
f^{\prime}(x) & =\left(e^{x} \cos (x)\right)^{\prime} \\
& =\left(e^{x}\right)^{\prime} \cos (x)+e^{x}(\cos (x))^{\prime} \\
& =e^{x} \cos (x)+e^{x}(-\sin (x)) \\
f^{\prime}(x) & =e^{x}(\cos (x)-\sin (x))
\end{aligned}
$$

(b) [5] Below is the graph of $f(x)$ on the interval $0 \leq x \leq \frac{\pi}{2}$. What are the (x, y) coordinates of the point at which the slope of the tangent is equal to zero?

The tangent is zero around $(0.8,1.5)$-ish. We can compute the exact value by setting $f^{\prime}(x)=0$. Well, if $e^{x}(\cos (x)-\sin (x))=0$, then either $e^{x}=0$ or $\cos (x)-\sin (x)=0$. The former is impossible, but $\cos (x)-\sin (x)=0$ is definitely possible!

If $\cos (x)-\sin (x)=0$ then by moving the $-\sin (x)$ over and we can then divide both sides by $\sin (x)$ we get $\tan (x)=1$. For what angle is the tangent 1 ? Well, the tangent of an angle is the slope of the hypotenuse of a right-angle triangle in the unit circle. If the hypotenuse has slope 1 , it must be at an angle of $\frac{\pi}{4}$ (draw the picture and check!). Another way to think about this is that if the base and height (i.e. cosine and sine) of a right angle triangle are equal, then the triangle is isosceles and the inside angle must be $\frac{\pi}{4}$. So, $x=\frac{\pi}{4}$ which means that $y=f\left(\frac{\pi}{4}\right)=e^{\frac{\pi}{4}} \cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} e^{\frac{\pi}{4}}$.

The point of zero sloped tangent is therefore $\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}} e^{\frac{\pi}{4}}\right)$

