
Implementing BGM

Raphael Yan

April 19, 2005

Abstract

In this study, the implementation of the BGM model is inves-
tigated. Theoretical background and numerical techniques are pre-
sented. Derivatives on Libor are priced in this model, and numerical
results are compared to existing literature.

Contents

1 Introduction 2

2 The BGM model 3
2.1 Numeraire . 3
2.2 Forward measure . 4

3 Simulation 4

4 Exact Caplet Prices 5

5 European Swaptions 6

6 Bermudan Swaptions 7
6.1 Longstaff and Schwartz . 8

7 Result 9

8 Summary 10

9 Tables 11

1

10 Listings 13
10.1 Listing 1: Simulation . 13
10.2 Listing 2: Caplet . 14
10.3 Listing 3: European swaption 15
10.4 Listing 4: Bermudan swaption 16

1 Introduction

Historically, interest rate modelling begins with a specification of the instan-
taneous short rate, such as the well-known Vasicek or CIR models. While
these short rate models give closed-form solutions for prices of bonds and
bond options, they became awkward to use when pricing derivatives on dis-
cretely compounded forward rates. For example, consider a cap, which is a
collection of call options on individual forward Libor rates (called caplets).
The most obviously natural thing to do would be to use the Black-Scholes
formula to price a caplet 1, by treating the discretely compounded forward
Libor rate as geometric Brownian motion. This has been and still is stan-
dard market practice today. However, this is inconsistent with all short rate
model, in the sense that no short rate model will result in a lognormal forward
rate (see [2] § 6.2).

In an effort to justify the use of Black’s formula for Libor-based derivates,
researchers began to directly model discretely compounded rates as lognor-
mal processes. In the case of forward rates, Brace, Gatarek, and Musiela [3]
derived the no-arbitrage conditions under the celebrated HJM framework.
This became known as the BGM model, otherwise known as Libor Market
Model, or lognormal forward Libor model, and is the model being investi-
gated in this study.

The BGM model is described in Section 2. Simulation of the forward
rates is explained in Section 3. Section 4 verifies that Monte-Carlo simulated
caplet prices are close to the exact Black’s caplet formula. In Section 5 Eu-
ropean swaptions are examined. For Bermudan swaptions, the technique by
Longstaff and Schwartz is employed, which is desribed in Section 6. Section 7
presents numerical results of the swaption prices, and compares them with
those reported in [4]. Section 8 summarizes what is accomplished in this
study.

1The version of the formula when the underlying is a forward price is known as Black’s
formula [1]

2

2 The BGM model

We will start with a finite set of dates, called the tenor structure

0 = T0 < T1 < · · · < TN < TN+1

Let L(t, Tn, Tn+1) be the forward Libor rate, as seen at time t, for the period
[Tn, Tn+1]. We will abbreviate this to Ln(t). We assume the accrual period
Ti+1 − Ti, for all i, is a constant equal to δ. Let Bn(t) be the time t price of
a zero coupon bond (or simply “bond”) that matures at Tn. We know

Li(t) =
1

δ

(
Bi(t)

Bi+1(t)
− 1

)
, i = 1, . . . , N

On a tenor date Ti, a bond Bn(Ti) that has not matured is computed by

Bn(Ti) =
n−1∏
j=i

1

1 + δLj(Ti)
(1)

In the BGM model, the forward rates are lognormal, and the SDE is

dLn(t)

Ln(t)
= µn(t)dt + λn(t)dWt n = 1, . . . , N (2)

where Wt is a d-dimensional Brownian motion, λn(t) is the volatility, and
µn(t) is the drift. In what follows, d = 1 for simplicity. The drift is deter-
mined by no-arbitrage conditions; but first we have to specify a numeraire.

2.1 Numeraire

From standard theory, we know the time t price, X(t), of a time T -measurable
contingent claim is given by

X(t) = N(t)E

[
X(T)

N(T)
|Ft

]
(3)

where N(t) is the numeraire, and the expectation is taken with respect the
measure Q that makes every tradable assets Q-martingales. This Q is what is
meant by measure associated with the numeraire. The choice of numeraire is
arbitrary, and is chosen for convenience. However, it determines the measure,
and hence the drifts µn(t) of the forward rates under the associated measure.

3

2.2 Forward measure

To motivate the notion of forward measure, consider the time t price of a
caplet that pays δ(Ln(Tn)−K)+ at time Tn+1. Tn is called the fixing, or reset
date, Tn+1 is the payment date, and this caplet price is denoted by Cn(t).
The most convenient numeraire for pricing this caplet will be Bn+1(t), since
then by Eq (3) the price is

Cn(t) = Bn+1(t)E
n+1[δ(Ln(Tn) − K)+] (4)

where En+1[·] is the expectation with respect to the so-called Tn+1-forward
measure Qn+1. In other words, the Tn+1 forward measure is the measure
associated with the numeraire being the bond that matures at Tn+1.

Now consider

Ln(t)Bn+1(t) =
1

δ
(Bn(t) − Bn+1(t))

This is a tradable asset, so it follows that Ln(t) has to be a Qn+1-martingale,
implying that the dynamics of Ln(t) is

dLn(t) = Ln(t)λn(t)dWt

In words, Ln(t) is a driftless geometric Brownian motion under Qn+1 for all
n. This makes Eq (4) easily computed; it will be given in Section 4.

3 Simulation

From now on, we will choose the bond that matures on the final date of the
tenor TN+1, as the numeraire. The measure associated with this numeraire is
called the terminal measure. We know LN (t) is driftless under this measure,
and we want Ln(t) for 1 ≤ n ≤ N − 1 to be driftless under their respective
forward measures.

However, to simulate all forward rates simultaneously, it is necessary to
simulate all of them under one measure. This means we need the dynamics
(the drift term) for all Ln(t) under the terminal measure. The main contri-
bution of [3] is the characterization of the arbitrage-free dynamics; we state
the SDE of the forward rates under the terminal measure:

4

Proposition 1 Under the terminal measure, the drifts of Ln(t) for 1 ≤ n ≤
N − 1 is

µn(t) = −
N∑

k=n+1

δLk(t)λn(t)2

1 + δLk(t)
(5)

This is Proposition 6.3.1 in [2], where a proof is also given.
In logarithmic form, the SDE for Ln(t) Eq (2) is

d log Ln(t) = (µn(t) − 1

2
λn(t)2)dt + λn(t)dWt

For a time step size h, the discretized evolution of Ln is [5]

Ln((i + 1)h) = Ln(ih) exp[(µn(ih) − 1

2
λn(ih)2)h + λn(ih)

√
hZi+1]

where

µn(ih) = −
N∑

k=n+1

δLk(ih)λn(ih)2

1 + δLk(ih)

and Zi are independent standard normal random variables. In all subsequent
simulations, we choose the step size h to be the same as δ, and we assume
that the volatility λn(t) is constant for all n and t. On Listing 10.1, the C
code for simulation is given.

4 Exact Caplet Prices

We now compare simulated caplet prices to their exact values. From Eq (4),
the Black’s formula for this caplet is [5]

Cn(0) ≡ CBlack(λ̄n, K, Ln(0), Bn+1(0), Tn)

where
CBlack(σ, K, r, b, T) = δb [rΦ(d1) − KΦ(d2)] ,

d1 =
log(r/K) + σ2T/2

σ
√

T

d2 =
log(r/K) − σ2T/2

σ
√

T

5

λ̄n =

√
1

Tn

∫ Tn

0
λn(t)2 dt

If we wish to compute the caplet prices from simulation, we can use
Eq (3):

Cn(0) = BN+1(0) δ E

[
(Ln(Tn) − K)+

BN+1(Tn+1)

]

where the expectation E means taking average.
The C code for computing caplet prices, using both exact formula and

simulation, are given in Listing 10.2. For initial conditions of Ln(0), we
assume the initial zero coupon bond prices Bn(0) are such that

Bn(0) = exp(−0.05 × Tn)

We take δ = 0.25 with N = 19, so the caplets have maturities from 3 months
to 5 years. All caplets are at-the-money, meaning the strike K for Cn is
Ln(0).

The result is given on Table 1. The prices are given in basis points. It
can be seen that with 10000 simulation paths, the worst error is no more
than 1 bp.

5 European Swaptions

We will now describe the calculation of European swaptions. Details are
given in [2]. A swap is a contract that swaps payments between two parties
on a given set of future dates. Party A is said to enter a pay-fixed swap, if
she pays a predetermined amount K on {Tα+1, . . . , Tβ}, in exchange for a
floating amount δL(· , Tα, Tα+1), . . . , δL(· , Tβ−1, Tβ), where the Libor rates
reset on {Tα, . . . , Tβ−1}. The length of the swap, Tβ − Tα, is known as the
tenor of the swap.

To make this constract worth zero at time 0, it can be shown that

K ≡ Sα,β(0) =
Bα(0) − Bβ(0)∑β

i=α+1 δBi(0)
(6)

The amount K is called the swap rate of the swap. This rate is denoted by
Sα,β(0) for future use.

6

A European swaption gives the holder the right to enter a swap at a
particular swap rate Ks, at the maturity of the swaption, usually at Tα. It
can be shown that the payoff of a European swaption at Tα is

euro ≡

δ

β∑
i=α+1

Bi(Tα)(Li−1(Tα) − Ks)




+

(7)

This amount will be paid at Tα+1. Therefore, the time 0 price of this
swaption under the terminal measure is computed by

BN+1(0)E

[
euro

BN+1(Tα+1))

]

The code is given in Listing 10.3. We will always assume Tβ = TN+1. The
numerical results will be given in Section 6, with results from Bermuadan
swaptions shown together.

6 Bermudan Swaptions

We are now ready to look at Bermudan swaptions. As opposed to the Euro-
pean case where exercise can only take place on a fixed given date, Bermudan
swaptions give the holder the right to enter into a swap on any one of a set
of dates, ususally on the reset dates {Tα, . . . , Tβ−1} of the underlying swap.

We will focus on the version of Bermudan swaption known as co-terminal
[8], which means the tenor of the underlying swap shrinks as each exercise
date is passed. In other words, the maturity date of the underlying swap
constract has a fixed Tβ . This is in contrast to the fixed-maturity version,
where the swaps have the same tenor on each exercise date.

The tenor structure for Bermudan swaptions is denoted by xNCy, where
x is the total length of the swaption, and y is the no-call period. In terms of
{Tα, . . . , Tβ}, y is Tα and x is Tβ . For example, if the contract is 5NC1, and
δ = 0.5, then α = 2 and β = 10.

For all financial derivates with an early exercise feature, the main question
to answer is to determine whether exercising today will generate more cash
flow than the expected cash flow from continuing [6]. Call the cash flow from
exercising ei if the swaption is exercised on Ti, and call the expected cashflow

7

from holding hi. ei is readily computed as in Eq (7)

ei =


δ

β∑
n=i+1

Bn(Ti)(Ln−1(Ti) − K)




+

where K is the strike of the Bermudan swaption.
hi is zero if i = N , on the last date to exercise the swaption. For i <

N , hi = BN+1(Ti)E[BN+1(Ti+1)
−1 max{hi+1, ei+1}]. Now hi depends on the

swap rate at Ti, which depends on all the forward rates still alive at Ti. Given
the high dimensionality of the collection of forward rates, it is obviously
undesirable to construct trees for Ln(t) and compute hi by the well-known
backward induction. This is where the Longstaff and Schwartz method [7]
comes in.

6.1 Longstaff and Schwartz

Essentially, the Longstaff and Schwartz method (LSM, but it is “least-square
Monte Carlo” according to [7]) is to approximate hi by least squares, using
cross-sectional information from the simulation. The hi is the expectation,
conditioning on the forward rates at time Ti, of the cash flow from holding
on and not exercising.

In the context of pricing Bermudan swaptions in BGM, this method goes
as follows (for details, see [2], Ch. 10):

1. simulate nit paths of Ln(t);

2. for the it path, store swap rate at time Ti as s[it][i], payoff from
exercise as e[it][i], numeraire as numer[it][i];

3. Now we compute the cash flow for each time and each path. At time N
the cash flow is the amount from exercising, so cf[it][N]=e[it][N]

for all it.

4. Set n=N-1.

5. Identify which paths are in-the-money; that is, test whether e[it][n]>0,
and set the flag itmflag[it][n] to be 1 if e[it][n]>0 and 0 otherwise

6. For the in-the-money paths, store the swap rates in the array x. Store
the discounted cash flow, cf[it][n+1]*numer[it][n]/numer[it][n+1],
in the array y.

8

7. Now we regress y on x by least square. We are fitting the model y =
c0 + c1x + · · · + crx

r by minimizing the sum of squared errors.

To find the coefficients, we use matrix notation as follows. y is a col-
umn vector obtained from y in the previous step. X is a matrix with
the first column being all 1, and other columns depend on the order of
regression. Usually the order is 1 or 2; from experiments the order has
minimal effect, so we take the order to be 2. This means the second
column of X is x, and the third column of X is x2 (component-wise
exponentiation). c is the vector of coefficients; for second order regres-
sion it has components c0, c1 and c2. From standard linear algebra, we
know c = (XTX)−1XT y.

8. Once we have the coefficients c0, c1 and c2, we can compare the cashflow
from exercising and continuing. The expected cashflow for each in-the-
money path from continuing is hn = c0 + c1x + c2x

2. By comparing it
with the cashflow from immediate exercise, we can identify whether to
exercise or not. Set the exercise flag eflag[it][n] to be 1 if optimal
to exercise, 0 otherwise.

9. Since a Bermudan option can be exercised once, if eflag[it][n]=1,
set eflag[it][k]=0 for all n ≤ k ≤ N .

10. Now that we know whether to exercise or not for path it at time n,
set the cashflow cf[it][n] to be e[it][n] if exercising, and set it to
be cf[it][n+1]*numer[it][n]/numer[it][n+1] if not.

11. Decrement n and start over from step 5 until n=alpha.

12. Now that we have the expected cash flow for all paths at time Tα,
that is, cf[it][alpha] for all it, we can discount to time 0 and take
average.

The code is given in Listing 10.4. The functions S is to compute swaprates,
condexp is to compute conditional expectation, and regress is to compute
the coefficients of the regression.

7 Result

We now present the simulated European and Bermudan swaption prices in
Table 2. They are compared to the numbers shown in [4], Table 3.

9

Note In [4], the European swaption prices are computed using Monte-
Carlo, and Bermudan swaption prices are computed using LSM, so they are
computed exactly the same way as done here. As their title suggests, their
contribution is to speed up the simulation of the forward rates.

The parameters are K = 5.06978%, δ = 0.5, λ = 0.15. Again, the initial
forward rates Ln(0) are such that

Bn(0) = exp(−0.05 × Tn)

for all n. The row PPR is from [4] (two decimal places are given); the second
row are my results. The notation xNCy for Bermudan swaptions is explained
before; in case of European swaptions, it means the swaption expires after y
years.

8 Summary

The BGM model for modeling Libor forward rates is studied. Theoreti-
cal background is given, and three types of derivatives (caplets, European
swaptions, Bermudan swaptions) are priced. Caplet prices are computed us-
ing Monte-Carlo simulations, and they are compared to the exact solution
(Black’s formula). European and Bermudan swaptions are also simulated,
where the early exercise feature of Bermudan swaptions are handled using
the Longstaff-Schwartz method (LSM). These numerical results are compared
to that found in the literature. All C codes are given.

10

9 Tables

n Exact Simulated
1 4.89 4.90
2 6.83 6.84
3 8.26 8.46
4 9.41 9.50
5 10.39 10.30
6 11.23 11.15
7 11.98 12.00
8 12.64 12.60
9 13.24 13.35
10 13.77 14.01
11 14.26 14.36
12 14.70 14.77
13 15.11 15.17
14 15.48 15.58
15 15.81 16.05
16 16.12 16.29
17 16.41 16.60
18 16.66 16.99
19 16.90 17.08

Table 1: Caplet prices: exact vs simulated

11

Bermudan European
PPR 28.85 26.88
2NC1 28.932156 26.952090
PPR 62.78 52.92
3NC1 62.257950 51.823018
PPR 101.51 78.77
4NC1 99.686210 76.159858
PPR 43.59 42.55
4NC3 42.290254 41.245924
PPR 137.95 99.31
5NC1 141.231511 100.803660
PPR 86.75 80.83
5NC3 86.972307 81.312193
PPR 179.48 123.36
6NC1 182.725274 121.351069
PPR 136.43 123.06
6NC3 132.778107 119.065604
PPR 50.79 50.09
6NC5 50.101503 49.375011
PPR 221.38 140.66
7NC1 224.840564 142.095048
PPR 177.11 153.71
7NC3 177.229566 153.952364
PPR 100.59 96.57
7NC5 100.013132 96.076194
PPR 266.35 161.00
8NC1 273.089711 161.524309
PPR 226.94 190.98
8NC3 225.368319 187.705001
PPR 151.13 140.95
8NC5 149.612847 140.051147
PPR 53.70 53.12
8NC7 52.111712 51.575026

Table 2: Comparison between PPR and my swaption prices

12

10 Listings

10.1 Listing 1: Simulation
void SimulateTerminal(double** L,double constlam,

int N,double del,double h,long idum){

int printpath=0;

int j,k,i;

double z,mu;

for(j=0;j<=N-1;j++){

z=gasdev(&idum); //printf("%f\n",z);

for(i=0;i<=j;i++)

L[i][j+1]=L[i][j];

for(i=j+1;i<=N;i++){

mu=0.0;

for(k=i+1;k<=N;k++)

mu-=(del*DSQR(constlam)*L[k][j])/(1.0+del*L[k][j]);

L[i][j+1]=L[i][j]*exp((mu-0.5*DSQR(constlam))*h

+constlam*sqrt(h)*z);

}

}

}

13

10.2 Listing 2: Caplet
double cblack(double sig,double k,double r,double b,

double T,double del){

double d1=(log(r/k)+0.5*DSQR(sig)*T)/(sig*sqrt(T));

double d2=(log(r/k)-0.5*DSQR(sig)*T)/(sig*sqrt(T));

return del*b*(r*cumnor(d1)-k*cumnor(d2));

}

void ExactCaplet(double* caplet,double** L,double constlam,

int N,double* T,double* K,double del){

int n,j;

double* P=dvector(1,N+1);

for(n=1;n<=N+1;n++){

P[n]=1.0;

for(j=0;j<=n-1;j++)

P[n]*=1.0/(1.0+del*L[j][0]);

}

for(n=1;n<=N;n++)

caplet[n]=cblack(constlam,K[n],L[n][0],P[n+1],T[n],del);

}

void SimCaplet(double* caplet,double** L,double constlam,int N,

double* T,double* K,double del,double h,

unsigned long niter){

int n,j;

unsigned long iter;

double num=1.0,den=1.0;

for(j=0;j<=N;j++)

num*=1.0/(1.0+del*L[j][0]);

for(n=1;n<=N;n++)

caplet[n]=0.0;

for(iter=1;iter<=niter;iter++){

SimulateTerminal(L,constlam,N,del,h,-iter);

for(n=1;n<=N-1;n++){

den=1.0;

for(j=n+1;j<=N;j++)

den*=1.0/(1.0+del*L[j][n+1]);

caplet[n]+=(num*del*pos(L[n][n]-K[n])/den)/niter;

}

caplet[N]+=num*del*pos(L[n][n]-K[n])/niter;

}

}

14

10.3 Listing 3: European swaption
double EuropeanSwaption(int alpha,double** L,double constlam,int N,

double* T,double K,double del,double h,

unsigned long niter){

int i,j;

unsigned long iter;

double num=1.0,den=1.0,ans,avg,std,swaption;

for(j=0;j<=N;j++)

num*=1.0/(1.0+del*L[j][0]);

double Bi;

avg=0.0; std=0.0;

for(iter=1;iter<=niter;iter++){

SimulateTerminal(L,constlam,N,del,h,-iter);

den=1.0;

for(j=alpha+1;j<=N;j++)

den*=1.0/(1.0+del*L[j][alpha+1]);

swaption=0.0;

for(i=alpha+1;i<=N+1;i++){

Bi=1.0;

for(j=alpha;j<=i-1;j++)

Bi*=1.0/(1.0+del*L[j][alpha]);

swaption+=Bi*del*(L[i-1][alpha]-K);

}

ans=num*pos(swaption)/den;

avg+=ans/niter;

}

return avg;

}

15

10.4 Listing 4: Bermudan swaption
double S(int alpha,int beta,double* P,int N,double del){

double den=0.0;

int i;

for(i=alpha+1;i<=beta;i++)

den+=del*P[i];

return (P[alpha]-P[beta])/den;

}

double condexp(double* coef,int order,double x){

double ret=coef[0];

int io;

for(io=1;io<=order;io++)

ret+=coef[io]*pow(x,io);

return ret;

}

double BermudanSwaption(int alpha,double** L,double constlam,int N,

double* T,double K,double del,double h,

unsigned long nit,int payrec){

int n,i,j;

unsigned long it;

double* B;

double **s=dmatrix(1,nit,alpha,N);

double **e=dmatrix(1,nit,alpha,N);

double **numer=dmatrix(1,nit,alpha,N);

for(it=1;it<=nit;it++){

SimulateTerminal(L,constlam,N,del,h,-it);

for(i=alpha;i<=N;i++){

B=dvector(i,N+1);

B[i]=1.0;

for(n=i+1;n<=N+1;n++){

B[n]=1.0;

for(j=i;j<=n-1;j++)

B[n]*=1.0/(1.0+del*L[j][i]);

}

s[it][i]=S(i,N+1,B,N,del);

e[it][i]=0.0;

for(n=i+1;n<=N+1;n++){

if(payrec==PAYFIXED)

e[it][i]+=B[n]*del*(L[n-1][i]-K);

else

e[it][i]+=B[n]*del*(K-L[n-1][i]);

}

e[it][i]=pos(e[it][i]);

numer[it][i]=1.0;

for(n=i;n<=N;n++)

numer[it][i]*=1.0/(1.0+del*L[n][i]);

free_dvector(B,i,N+1);

}

}

double *x,*y;

double** cf=dmatrix(1,nit,alpha,N);

int** itmflag=imatrix(1,nit,alpha,N);

int** eflag=imatrix(1,nit,alpha,N);

int iitm,nitm,nn;

int order=2; double* coef=dvector(0,order);

for(it=1;it<=nit;it++)

16

cf[it][N]=e[it][N];

for(n=N-1;n>=alpha;n--){

nitm=0;

for(it=1;it<=nit;it++){

if(e[it][n]>0.0){

itmflag[it][n]=1; nitm++;

}else{

itmflag[it][n]=0;

}

}

x=dvector(1,nitm); y=dvector(1,nitm);

iitm=1;

for(it=1;it<=nit;it++){

if(itmflag[it][n]){

x[iitm]=s[it][n];

y[iitm]=cf[it][n+1]*numer[it][n]/numer[it][n+1];

iitm++;

}

}

regress(x,y,nitm,order,coef);

iitm=1;

for(it=1;it<=nit;it++){

if(itmflag[it][n]){

if(e[it][n]>condexp(coef,order,x[iitm])){

eflag[it][n]=1;

for(nn=n+1;nn<=N;nn++)

eflag[it][nn]=0;

}else{

eflag[it][n]=0;

}

iitm++;

}else{

eflag[it][n]=0;

}

}

free_dvector(x,1,nitm); free_dvector(y,1,nitm);

for(it=1;it<=nit;it++){

if(eflag[it][n])

cf[it][n]=e[it][n];

else

cf[it][n]=cf[it][n+1]*numer[it][n]/numer[it][n+1];

}

}

double disc,ans,avg=0.0,num=1.0;

for(j=0;j<=N;j++)

num*=1.0/(1.0+del*L[j][0]);

for(it=1;it<=nit;it++){

disc=num/numer[it][alpha+1];

ans=cf[it][alpha]*disc;

avg+=ans/nit;

}

free_dmatrix(s,1,nit,alpha,N);

free_dmatrix(e,1,nit,alpha,N);

free_dmatrix(numer,1,nit,alpha,N);

free_dmatrix(cf,1,nit,alpha,N);

free_imatrix(itmflag,1,nit,alpha,N);

free_imatrix(eflag,1,nit,alpha,N);

17

return avg;

}

void regress(double* x,double* y,int n,int order,double* coef){

int i;

switch(order){

case 1:{

double sxy=0.0,sx=0.0,sy=0.0,sx2=0.0;

for(i=1;i<=n;i++){

sxy+=x[i]*y[i];

sx+=x[i];

sy+=y[i];

sx2+=DSQR(x[i]);

}

coef[1]=(sxy-sx*sy/n)/(sx2-DSQR(sx)/n);

coef[0]=(sy-coef[1]*sx)/n;

break;

}

case 2:{

double sx=0.0,sx2=0.0,sx3=0.0,sx4=0.0,sy=0.0,sxy=0.0,sx2y=0.0;

for(i=1;i<=n;i++){

sx+=x[i];

sx2+=DSQR(x[i]);

sx3+=pow(x[i],3);

sx4+=pow(x[i],4);

sy+=y[i];

sxy+=x[i]*y[i];

sx2y+=DSQR(x[i])*y[i];

}

double **a=dmatrix(1,3,1,3),*b=dvector(1,3),*p=dvector(1,3),*u=dvector(1,3);

a[1][1]=n; a[1][2]=sx; a[1][3]=sx2;

a[2][1]=sx; a[2][2]=sx2; a[2][3]=sx3;

a[3][1]=sx2; a[3][2]=sx3; a[3][3]=sx4;

b[1]=sy; b[2]=sxy; b[3]=sx2y;

choldc(a,3,p); cholsl(a,3,p,b,u);

coef[0]=u[1]; coef[1]=u[2]; coef[2]=u[3];

free_dvector(u,1,3); free_dvector(b,1,3); free_dvector(p,1,3);

free_dmatrix(a,1,3,1,3);

break;

}

default:

nrerror("order not 1");

}

}

18

References

[1] F. Black The pricing of commodity contracts, Journal of Financial Eco-
nomics, 3:167-179, 1976

[2] Damiano Brigo and Fabio Mercurio Interest Rate Models: Theory and
Practice, Springer, 2001

[3] Brace, Gatarek, and Musiela The market model of interest rate dynam-
ics, Mathematical Finance 7:127-155

[4] R Pietersz, A Pelsser, and M van Regenmortel Fast drift-approximated
prcing in the BGM model, Journal of Computational Finance, 8(1):93-
124

[5] P. Glasserman and X. Zhao Fast Greeks by Simulation in Forward Libor
Models, Journal of Compuational Finance, 3(1):5-39, 1999

[6] V. V. Piterbarg A practitioner’s guide to pricing and hedging callable
libor exotics in forward libor models, SSRN, 2003

[7] Longstaff and Schwartz Valuing American Options by Simulation:
a simple least-squares approach, The Review of Financial Studies,
14(1):113-47

[8] R Pietersz and A Pelsser A comparison of single-factor Markov-
functional and multi-factor market models, Working Paper, 2005

19

