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1 Recovery of treasury

Let us first discuss the RT model, since it is the weakest candidate of the three. The

weaknesses of the RT model are:

(1) Coupon bonds can recover more than their par value.

This may occur for example if the defaultable coupon bond has a high default risk, a long

time to maturity, and trades close to par. Then the equivalent default-free coupon bond

will have a value that is significantly above par.

For Example, we take default intensity λ = 5%, default-free interest rate r = 4% at all

times, and the average RT recovery rate c = 40%. Then defaultable coupon bonds of 5 and

10 years to maturity annual coupons are

c̄5 = 7.0967%

and

c̄10 = 6.9584%.

Default-free coupon bonds with 5 and 10 years to maturity are c5 = 113.39, c10 = 123.24.

In this case of the 10-year bond with recovery rate c = 82% or more would result in a payoff

cC̄ at default of more than 100.

(2)There is an upper bound for market-observed credit spreads.

Consider the yield spread sy
RT of a defaultable zero-coupon bond, which is defined by

B̄RT (0, T ) = B(0, T )e−sy
RT (0,T )T (1)

In RT model, the price of the defaultable zero-coupon bond is given by

B̄RT (0, T ) = (1− c)B̄(0, T ) + cB(0, T ) (2)
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By equation (1) and (2), we can get that

e−sy
RT (0,T )T =

B̄RT (0, T )
B(0, T )

= (1− c)P (0, T ) + c > c (3)

By taking logarithms and dividing both sides by -T, we can get the expression of yield

spread and its upper bound as follows:

sy
RT (0, T ) = − 1

T
ln[(1− c)P (0, T ) + c] (4)

and

sy
RT (0, T ) < − 1

T
lnc (5)

This upper bound for the credit spread, − 1
T
lnc, is significant, and does not depend on

the default intensity. If we take c = 0.4, then −lnc ≈ 0.916. For T = 10 it means that

sy
RT < 9.16% whatever the actual default risk of the obligor.

These points highlight a fundamental problem of the RT model: A constant RT recovery

rate means different loss severities for bonds of different maturities and different loss sever-

ities for bonds of different coupon sizes.

Now let us analyse the par spread of defaultable coupon bonds under RT model.

The price of defaultable coupon bond is:

C̄RT = (1− c)C̄ + cC = (1− c)
N∑

i=1

c̄B̄(0, Ti) + c
N∑

i=1

B̄(0, Ti) + (1− c)B̄(0, TN) + cB(0, TN).

Set C̄RT = 1 to solve for the coupon c̄ to get:

c̄par
RT =

1− cB(0, TN)− (1− c)B̄(0, TN)

c
∑N

i=1 B(0, Ti) + (1− c)
∑N

i=1 B̄(0, Ti)
(6)

Then subtracting the default-free par coupon amount from this gives the par coupon spread
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spar
RT for the RT model:

spar
RT =

(1− B̄(0, TN))
∑N

i=1 B(0, Ti)− (1−B(0, TN))
∑N

i=1 B̄(0, Ti)∑N
i=1 B(0, Ti)(c

∑N
i=1 B(0, Ti) + (1− c)

∑N
i=1 B̄(0, Ti))

(7)

There is also an upper bound for par spreads. This is reached by letting the default

intensity approach infinity or setting B̄(0, Ti) = 0 for all i ≤ N . The upper bound for par

spread is:

spar
RT ≤

1

c
∑N

i=1 B(0, Ti)
. (8)

In RT model, par spread is bounded from above and the bound is independent of default

intensity, which is very much like the properties of the zero-coupon bond yield spreads.

Now we take recovery rate c = 40%, default-free interest rates r = 4%, and with a

constant intensity Poisson process with intensity λ = 5%, then annual coupons to get the

following graph. Please find the figure at Appendix 1.

In the figure 1, the red line stands for upper bound of the zero-coupon spread. Green

line stands for par coupon spreads and blue line for zero-coupon spreads. From the graph,

we can see that the par spread curve and zero-coupon bond spread are monotonically

decreasing. But zero-coupon bond spread curve is a little bit lower than the par spread

curve. One can also see that the upper bound for the zero-coupon bond spreads can become

a significantly binding restraint.

• For a given par spread curve, the implied intensity can be obtained. For example,

if the par spread curve is 3%, i.e. spar
RT = 3%, and r = 4%, c = 40%, then the

corresponding term structure of implied default intensities is influenced by the upper

bounds on the par spreads. The closer the par spread curve comes to the upper

bound, the higher the resulting implied default intensity.
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• Coupon differences: Because the recovery in the RT model is specified in terms of all

defaultable claims, a different coupon amount will result in different recovery payoff

for the bond.

• Behavior for high-yield bonds: The high coupons and default intensities of high-yield

bonds exacerbate the problems of RT model. For example, if spar
RT = 7%, the par

spread curve can not be fitted beyond a maturity of 14 years, and the equivalent

four-year default-free bond is worth 125.34.

• Conclusion about RT model:

The biggest strength of the RT model is computational convenience. If a price for

the corresponding default-free payoff is already available, and a model for the zero-

recovery case has also already been built, then the RT model does not require anything

but forming a weighted average of the default-free and zero-recovery rate. Unfortu-

nately, significant shortcomings is its shape of spread curves and intensities and need

some complicated the adjustment for the recoveries above 100%

Thus, RT is convenient as a quick fix to add some kind of recovery to models that

previously only had zero recovery, but otherwise it can not be recommended for credit

derivative pricing.
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2 Recovery of Market Value (RMV)

As opposed to the RT model, RMV does not impose unrealistic bounds on spreads. By

definition, the par coupon of a defaultable coupon bond with default intensity λ, loss quota

q and default-free interest rate r must ensure that the price of the defaultable bond is at

par after the payment of the coupon. If coupons are paid at intervals of ∆t, the par coupon

amount is

e(r+qλ)∆t − 1 (9)

and the par coupon spread is

spar
RMV = e(r+qλ)∆t − er∆t (10)

From the equation (9) we can see that the par coupon amount is independent of the ma-

turity of the bond, and there are no upper bounds to the par spreads and zero-coupon

bond spreads. This means that the problems of the RT model are avoided. Then we can

immediately answer some test questions.

• From equation (10), for constant default intensities, the par spread curves are also

constant over maturity.

• For a given par spread, the default intensity curve that corresponds to a given flat

par spread curve is a again flat.

• If two defaultable bonds are identical except for the sizes of their respective coupons,

they will have different pre-default prices. Thus, they will have different payoffs at

default.
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For par coupon bonds, the RMV and RP models imply the same payoffs at default. The

pre-default market value and the par value of this bond coincide in this case. Therefore

we expect the RP model to exhibit similar properties to the RMV model. The par coupon

amount in the RP model is:

r + λ(1− π)

r + λ
(e(r+λ)∆t − 1) ≈ r + λ(1− π)

r + λ
(1 + (r + λ)∆t− 1)

= r∆t + (1− π)λ∆t.

The par spread in the RP model is:

spar
RP =

r + λ(1− π)

r + λ
(e(r+λ)∆t − 1)− (er∆t − 1)

≈ r + λ(1− π)

r + λ
((r + λ)∆t + 1− 1)− (r∆t + 1− 1)

= ∆t[r + (1− π)λ]

This means that for small ∆t, the par coupon amount and the par coupon of the RMV

model are both approximately r∆t + (1− π)λ∆t.

This confirms that RMV and RP are equivalent for all securities whose market price is

close to the corresponding par value.

The RP and RMV model also have some differences. Differences between RP and RMV

occur when the prices of the bonds are far away from par. We can sum up the pros and

cons of RMV and RP as follows:
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Situation RMV RP

Pricing of par bonds similar to RP similar to RMV

close to par

Pricing of recovery very good must mimick RMV

of OTC derivatives

Downgraded and distressed debt recovery assumption recovery assumption can remain unchanged as long as

must be adjusted the market price is above the recovery rates

Differing coupon sizes, different recovery rates-price same recovery rates-price difference is

same par value difference is the value of the coupon difference the value of the coupon difference

under RMV recovery under zero recovery

Pricing formulae elegant, simply discount more complicated, need to integrate/sum over all

with adjusted ”defaultalbe” rate possible times of default

Estimation and calibration no artificial distortion in the calibration of no artificial distortion in the calibration of

implied hazard rates from par bond spreads, implied hazard rates from par bond spreads,

simple consistent estimation (of product process qλ) may be able to calibrate implied

no separate calibration of λ and q possible recovery rate and default intensity

Modelling issues only need to model dynamics of product process model closer to default payoff definition

for pricing, OK if used with intensity-based models, in CDS documentation, can also be

cannot be used in firm’s value-based used in models where default is gradually approached

”Story” reorganisation, renegotiation of debt bankruptcy proceedings under an authority ensuring

strict relative priority

Conclusions about RP and RMV models:

Both RP and RMV have their strengths and weaknesses, and given the uncertainty sur-

rounding the value or distribution of recovery rates, small theoretical differences will not

make much difference in many application scenarios.

RMV is mathematically more elegant and is a good model for counterparty risk in OTC

derivatives transactions, but in particular for debt trading far below par it has conceptual

and modelling problems.

RP seems to do better here. Its setup is closely related to the way historical recovery

data is collected.
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Therefore, RP wins the race by small margin. RT dropped out early on, and the role

of RMV is unclear for crisis scenarios, although it is a good model in other respects. The

additional work that RP requires in order to determine the value of the recovery payoffs

will have to be done anyway if a CDS is to be priced.

3 Empirical Analysis of Recovery Rates

(1) Market implied recovery rates

In general, recovery rates are difficult to imply from observed market prices. Instead of

trying to imply recovery rates from debt prices of the same seniority class, Unal et al.

(2001) use the price differentials between senior- and junior-rated debt of the same obligor

to imply expected recovery rates.

The basic idea is the following:

Let A be underlying value for the ”assets in default”, the total amount that is paid to

creditors. πs is the recovery payoff. We specify the absolute priority as:

πS(A) =
1

KS
minKS, A (11)

It means that the the recovery payoff πs of the senior debt is the whole value of the assets

in default A, until the notional KS of senior debt is fully paid off. The corresponding payoff

to junior debt is:

πJ(A) =
1

KJ
maxA−KS, 0 (12)
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and

KJπJ + KSπS = A. (13)

Stochastic recovery is modelled by modelling A as a random variable. Suppose the

conditional distribution of A be a beta distribution with fixed variance but unknown mean

µ with density function f(µ, .). Then the expected recovery payoffs are:

πSe(µ) =
∫

πS(a)fA(µ, a)da (14)

and

πJe(µ) =
∫

πJ(a)fA(µ, a)da (15)

The model prices for the defaultable bonds are given by substituting these expected recov-

ery values in the corresponding bond pricing formula. Setting model prices equal to market

prices yields two equations for two unknown: mean asset-in-default value µ and default

hazard rate h.

(2)Historical recovery rates

When market implied recovery rates are not available, historical recovery rates can give

a valuable benchmark for appropriate values. Table 1 shows mean, median and standard

deviation of the recovery rates for different debt classes over the years 1981-2000.

Table 1.
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Seniority/security Median Average SD 1st Quartile 3rd Quartile

Senior/secured bls 72.0 64.0 24.4 45.3 85.0

Senior/unsecured bls 45.0 49.0 28.4 25.0 75.8

Senior/secured bonds 53.8 52.6 24.6 34.8 68.6

Senior/unsecured bonds 44.0 46.9 28.0 25.0 66.8

Senior/subordinated bonds 29.0 34.7 24.6 15.1 50.0

Subordinated bonds 28.5 31.6 21.2 15.0 44.1

Jenior/subordinated bonds 15.1 22.5 18.7 11.3 33.0

Preferred stock 11.1 18.1 17.2 6.4 24.9

Recovery rates show extremely high variability across different default events. Some

empirical indicators have been found that explain some of this variability, but much un-

certainty remains. From Table 1 we can see that, the large SDs are an indicator for the

uncertainty surrounding real-world recovery rates.

Table 2. Recovery rates by type of collateral. Collateral codes: all assets and current

assets=5; most assets=4; secured transactions, real estate, PP&E, oil and gas reserves and

equipement=3; capital stock of operating units, intellectual property and intercompany

debt=2; second lien=1; unsecured=0
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Collateral Recovery SD 95% Conf. Count

(1-5) 79.6 26.7 35.5 327

(2-5) 80.6 25.9 37.8 312

(3-5) 82.9 25.3 41.2 254

(4-5) 86.3 23.7 47.2 174

(5) 89.8 19.8 57.2 157

The principle findings for this method to get the above Table 2 are:

• Higher seniority ⇒ higher recovery at default.

• The level of subordination and security are strong influences.

• Better rating ⇒ higher recovery.

• Default losses are correlated with the leverage of the defaulting firm with higher

leverage implying higher losses.

• The relationship between loss and leverage is stronger in business cycle downturns

yielding very low recoveries for highly leveraged firms in recessions.

• Secure debt is less sensitive to the general state of the economy than unsecured debt.
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Appendix 1: Spreads in the recovery of treasury (RT) model.
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Appendix 2: Code for the figure of the spread. N=30;c=0.4;r=0.04;lambda=0.05

BbarTN=parspread=upperbound=array(dim=N) BTN=T=array(dim=N) sumBTi=sumBbarTi=array(0,dim=N)

for (i in 1:N) T[i]=i

for (i in 1:15) upperbound[i]=NA

for (i in 16:N) upperbound[i]=-1/T[i]*log(c, base=exp(1)) upperbound

yieldspread=-(1/T)*log((1-c)*exp(-lambda*T)+c, base=exp(1)) yieldspread

for (i in 1:N) BbarTN[i]=exp(-(r+lambda)*i) BTN[i]=exp(-r*i)

sumBTi[1]=BTN[1] sumBbarTi[1]=BbarTN[1] for (i in 2:30) t1=exp(-r*i) t2=exp(-

(r+lambda)*i) sumBTi[i]=sumBTi[i-1]+t1 sumBbarTi[i]=sumBbarTi[i]+t2

for (i in 1:30)

parspread[i]=((1-BbarTN[i])*sumBTi[i]-(1-BTN[i])*sumBbarTi[i])/(sumBTi[i]*(c*sumBTi[i]+(1-

c)*sumBbarTi[i])) parspread

plot(T, type=”l”, upperbound*100, xlab=”Maturity”, ylab=”Spread(ylim=c(0,6), col=”red”)

lines(T,parspread*100,col=”green”) lines(T,yieldspread*100,col=”blue”)
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