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1. Introduction

Bond investors loose all of their investment in the event of a default. In practice, however, investors frequently receive some recovery payment upon default. With the (in homogeneous) Poisson process we now have a first mathematical model to model the arrival time of a default event.

     Assuming constant interest rates r > 0, for a defaultable zero bond maturing at T with zero recovery we get 
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That is, in the intensity based framework we can value a defaultable bond as if it were default free by simply adjusting the discounting rate. Instead of discounting with the risk-free interest rate r, we know discount with the default-adjusted rate r+ λ where λ is the risk-neutral intensity. For modeling recovery purpose, we hope to get the similar form by adjusting the discounting rate. In this paper, we try to figure out this intuition by valuation in discrete-time recovery. We consider two conventions:  fractional recovery of face value and fractional recovery of market value.
2. Reduced -Form Default Models

2.1 Poisson Process

        Let 
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 denote the arrival times of some physical event. We call the sequence (Ti) (homogeneous) Poisson process with intensity λ if the inter-arrival times Ti+1 - Ti are independent and exponentially distributed with parameter, equivalently, letting 
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 is a (homogeneous) Poisson process with  intensity  λ  if the increments 
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are independent and have a Poisson distribution with  parameter λ(t-s) for s < t , i.e., 
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Poisson process has a number of important properties making it ubiquitous for modeling discrete events. Being Markovian, the occurrence of its next k jumps during any interval after time t is independent from its history up to t. The probability of one jump during a small interval of length ∆t is approximately λ∆t and that the probability for two or more jumps occurring at the same time is zero. In Practice, the default time is set equal to the first jump time of the Poisson process N. Thus 
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 is exponentially distribution with (intensity) parameter and the default probability is given by  
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The intensity is the conditional default arrival rate given no default:  
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 Letting ƒ denote the density of  F we can also write

In the structural approach a default is predictable, i.e. it can be anticipated. Since the jumps of a Poisson process are totally unpredictable, in the intensity based approach the default is unpredictable as well. This has important consequence for the term structure of credit spreads.
       We plot default probabilities F(T) as a function of horizon T for varying degree of intensities λ = 0.005, 0.01, and 0.02. 
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Clearly, F(T) is for fixed T increasing in the default intensity λ.

2.2 Reduced form models
“Reduced-form” defaultable term-structure models typically take as primitives the behavior of default free interest rates, the fractional recovery of defaultable bonds at default, as well as a stochastic intensity process for default. The intensity λt may be viewed as the conditional rate of arrival of default.  For example, with constant, default is a Poisson arrival. 
     These models are distinguished somewhat by the manner in which the recovery at default is parameterized. Jarrow and Turnbull (1996) stipulated

that, at default, a bond would have a market value equal to an exogenously specified fraction of an otherwise equivalent default-free bond. Duffie and

Singelton (1997) followed with a model that, when specialized to exogenous fractional recovery of market value at default, allows for close-form solutions in a wider range of cases, by showing that cash flows can

be discounted simply at the short-term default-free rate plus the risk-neutral rate of expected loss of market value due to default. 
       Here, we propose models with two recovery assumptions: fractional recovery of face value and fractional recovery of market value. In order to see the basic idea of valuation with the models, we suppose that recovery payments are made at the time of default and the default occurs only at discrete time intervals. 
3. Valuation in discrete-time recovery
The following sections specialize to obtain explicit results.

3.1 Ingredients and Assumptions

The model has several basic ingredients:

· A default time τ for default of the given issuer. The default time is assumed to have an intensity process λ with a constant intensity λ, for example, default has a Poisson arrival at intensity λ. More generally, for t before τ, we may view λt as the conditional rate of arrival of default at time t, given all information available up to that time. In other words, for a small time interval of length ∆, the conditional probability at time t that default occurs between t and t+∆, given survival to t, is approximately λ∆t.
· A bounded short-rate process r and equivalent martingale measure Q.

· Assuming that the risk-neutral probability r and default risk λ are independent with a known constant fraction for the face value or market value recovered at default. 
3.2 Fractional Recovery of face value
 Fractional Recovery of face value is based on a legalistic interpretation of bond covenants that would have defaulting firm liquidating their assets and returning to bondholders some fraction of the face values of their bonds according to the priority of their holdings. 

      Recovery at default is given by a bonded random variable W, per unit of face value. With discrete-time recovery, W is measured and received as of the first date after default among a pre-specified list 
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of times, with 
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, where T is maturity. The discrete –time recovery assumption may also be viewed simply as an approximation, with the virtue of explicit pricing, of the pricing that would apply with continual recovery.
Suppose that recovery payments are made at the time of default and that default occurs only at discrete time intervals of length ∆. For example, 
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, recovery is measured as of the end of the day of default. We assume that the number of periods before maturity,
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, is an integer. We let 
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 denote the market value at time t of any default recoveries to be received between times
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denote the price of a defaultable zero-coupon bond maturing at

time T, We have
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Since the risk-neutral time t conditional probability of default during any time interval ∆ is 
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(the difference in the survival probabilities to the beginning and the end of the period), we have                                        
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Where δ(0, s) is the price of a default-free zero-coupon bond maturing at time s. 
3.3 Fractional Recovery of market value
An alternative recovery assumption is that, at each time t, conditional on all information available up to but not including time t, a specified risk-     neutral mean fraction 
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 of market value is lost if default occurs at time t. With a risk-neutral default-intensity process λ*, the risk-neutral conditional expected rate of loss of market value owing to default is
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which is the value of a zero recovery bond with thinned (risk-neutral) default intensity
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      An attraction feature of this recovery convention, and the associated pricing relation showed in above formula, is that one may use a model for the default-adjusted short-rate process R = r + s of a type that admits an explicit discount d(0,T) . Then, we can value a default bond on the same computational platform used for default-free bond pricing. 
        In order to promote intuition for this pricing result, we will price a 3- year defaultable zero-coupon bond in a event-tree setting.  We suppose r the default-free annual interest rate and upward and downward changes in r are assumed to have equal risk-neutral probabilities. The bond may default in any year with 8% (risk-neutral) probability. The bond loses 60% of its market value if and when it defaults, i.e., L = 0.6. 
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We calculate the bond Price at each point as follows:
The bond price at the third year:
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If the default-free interest rate moves upwards to 11.25%, the value of the bond at year 2, assuming that it has no defaulted, will be the risk-neutral probability of surviving another year without default, multiplied by the payoff given survival, plus the risk-neutral default probability multiplied by the payoff given default.  Then, at the second year nodes, assuming no default before then, the bond prices are therefore 
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In the same way, we can get the bond prices at the first year nodes:
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Since there are two prices at the second nodes each with 50% probability, so we have to take the average of the two bond prices. 

All bond prices at each node are shown in Figure 1. 
From the event-tree setting, we can get a hint that the impact of default can be captured by an effective discount rate at any node of  
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In general, the effective discount rate at any node in the tree is R, where 
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with λ* us the risk-neutral probability of default at that node and L the risk-neutral expected loss in market value, as a fraction of the market value at that node, conditional on default in the next period.
For time periods of length ∆, if we substitute r, R and λ* in annualized form, as 
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Dividing through by ∆ and allowing ∆ to coverage to zero, leaving the continuous-time default-risk-adjusted short –rate process:

                                                     
[image: image32.wmf]*

l

L

r

R

+

=


We show the all default-adjusted short rates as following tree sitting.
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If we use the formula of R, we can get the same rate as the discount rate   
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In the same way, we can get the default-adjusted short rate at the beginning:
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We can confirm the bond price at default-adjusted rate R=10.29% node
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Therefore, when we use as a specification for a default-risk-adjusted short rate process R, there is no loss of generality, when pricing a defaultable claim, in treating the claim as if it is default-free, once the short-term default –free discounting rate r is replaced by the default-adjusted short rate R. In other words, the simplified valuation tree in Figure 2 is sufficient for pricing defaultable zero-coupon bonds. 
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Figure1. Valuation of a 3-year zero-coupon bond with default risk
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R= (r+λ*)/(1- λ*L)





Figure2. Valuation at default-adjusted short rates
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