Assignment 2 - Math 772
 Optimal Investment, Risk Measures and Pricing in Incomplete Markets

25/01/2006

1. This exercise refers to equilibrium in a one-period market. Consider a finite sample space $\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\}$.

- For the case of four different securities with prices $S=\left(S^{1}, S^{2}, S^{3}, S^{4}\right)$, construct an example of a 4×4 matrix $D_{i j}:=S_{T}^{i}\left(\omega_{j}\right)$ corresponding to a complete market.
- Consider ten different agents in this market, all with different utility functions (say some with a log utility, some with exponential utilities for differetn values of γ and some with power-law utilities with different values of δ and obtain the equilibrium prices for the securities according to the numerical algorithm discussed in class.

2. Consider a binomial tree in with parameters (u, d, p, r) in a 2 -period model. Obtain the optimal investment strategy in this complete market for the case of a log, exponential and power-law utility.
3. Consider a trinomial tree in with parameters $\left(u, d, p_{1}, p_{2}, r\right)$ in a 2 -period model. Obtain the optimal investment strategy in this incomplete market for the case of a log, exponential and power-law utility.
