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Adam Smith: individual x society

I In Wealth of Nations, Adam Smith writes that: “Every
individual necessarily labours to render the annual revenue of
the society as great as he can. He generally neither intends to
promote the public interest, nor knows how much he is
promoting it... he intends only his own gain, and he is in this,
as in many other cases, led by an invisible hand to promote an
end which was no part of his intention. Nor is it always the
worse for society that it was no part of his intention. By
pursuing his own interest he frequently promotes that of the
society more effectually than when he really intends to
promote it.

I His larger goal was to achieve societal good, and his main
concern was to show that this does not necessarily require
charitable action.

I His unfortunate generalization was to conclude (as above)
that self–interest necessarily leads to societal good.



John Nash: individual x society

I As we have seen, a set of individual strategies is in a Nash
equilibrium if no player can unilaterally improve his outcome,
given the strategies adopted by the other players.

I In this way, there are many examples (such as the prisoner’s
dilemma) in which each player will do what is best for himself,
in direct conflict for what is best for the group.

I In other words, Nash showed that Adam Smith’s conclusion
was false, since sometimes self–interest leads to societal losses.

I Now compare this with the following scene from the movie A
Beautiful Mind:
http://www.haverford.edu/math/lbutler/GoverningDynamics.html



Pure x Mixed Strategies

I When the actions of a player depend on probabilities, we say
that the player is following a mixed strategy. Otherwise the
strategy is called pure.

I For example, the solutions to the PD presented in the previous
lecture involved only pure strategies.

I When considering only pure strategies, it is possible to find
games with no NE (and therefore no solution at all).

I By contrast, games with mixed strategies always have a
solution.

I Mixed strategies can be introduced due to external
uncertainties, trembling hands, imperfect information or a
combination of all of these factors.



The Fugitive-Hunter Problem

I As an example (Ross 2006), consider the problem mentioned
earlier of a fugitive who has to cross one of three bridges: (1)
a safe one, (2) a rocky one, or (3) one inhabited by snakes.

I Assume further that a hunter waits for the fugitive on the
other side of the river and needs to decide by which bridge to
wait.

I Suppose that crossing the safe bridge is indeed perfectly safe,
whereas there is a 10% probability of being hit by a rock on
the rocky bridge and an 20% probability of dying of a
snakebite on the cobra bridge.

I Finally, assume that the fugitive only cares about surviving,
while the hunter only cares about reporting him dead. In
other words, neither player cares about the way in which the
fugitive might die.



FH problem in Strategic-form

I Let us say that, if the fugitive escapes, his payoff is 1 and the
hunter’s payoff is 0, whereas if the fugitive dies (for whatever
reason), his payoff is 0 and the hunter’s payoff is 1.

I In this way, we can analyze this game in strategic form as
follows:

Hunter
Safe Rocks Snakes

Fugitive
Safe (0,1) (1,0) (1,0)

Rocks (0.9,0.1) (0,1) (0.9,0.1)
Snakes (0.8,0.2) (0.8,0.2) (0,1)

I We then observe that there are neither dominant/dominated
rows or columns nor Nash equilibria for this problem.



Mixed Strategies and Indifference

I From our previous discussion of the FH problem (i.e, if for
some reason the fugitive thinks one bridge is optimal, the
same reason would lead the hunter to the same conclusion,
therefore rendering this bridge the worst possible choice for
the fugitive...) we expect that the only way to obtain a stable
solution for this problem is by letting the players choose their
strategies at random.

I Moreover, each player might try to choose probabilities in
order to minimize the expected payoff for the opponent.

I A general principle for this is for each player to choose
probabilities in such a way that the other player becomes
indifferent between the choices.



The indifference solution to the FH problem

I As an example of this indifference principle, let s1 = 1,
s2 = 0.9 and s3 = 0.8 be the probabilities of a safe crossing in
each of the three bridges (as determined by historical
observation).

I Now let w1,w2,w3 be the probabilities that the hunter will be
waiting in each of the three bridges, so that w1 +w2 +w3 = 1.

I Then the fugitive will be indifferent between the bridges
provided that

s1(1− w1) = s2(1− w2) = s3(1− w3).

I These equations can now be simultaneously solved, yielding

w1 =
49

121
, w2 =

41

121
, w3 =

31

121
.

I Notice how the hunter assigns a higher probability to the
safest bridge.



FH problem (cont.)

I Similarly, let f1, f2, f3 denote the probabilities that the fugitive
will choose each of the three bridges, so that f1 + f2 + f3 = 1.

I The fugitive will reason that the hunter will be indifferent
between the bridges provided that

s1f1 = s2f2 = s3f3.

I The solution to this equation is then

f1 =
36

121
, f2 =

40

121
, f3 =

45

121
.

I Note how the fugitive chooses the riskier bridge with higher
probability !

I Such strategies correspond to a NE, since any other choice of
probabilities by one player will give an advantage to the other
(by introducing a difference in the expected payoffs for the
bridges).



Imperfect information on trees

I The extensive-form analysis presented in the previous lecture
(trees) and the corresponding Zermelo algorithm (backward
induction), as well as the notion of SPE (subgame perfect
equilibrium) were well suited for sequential games of perfect
information.

I When simultaneous moves are allowed and/or a player needs
to make a decision without full information regarding the
previous moves in the game, the tree representation,
Zermelo’s algorithm and SPE need to be modified accordingly.

I To begin with, we need to introduce the notion of information
sets, represented by ovals around nodes where the player has
the same information, despite being reached by distinct paths.

I Next, Zermelo’s algorithm needs to be replaced by a
conditional probability method.

I Finally, the notion of SPE is replaced by that of SE
(sequential equilibrium).



Selten’s Horse

I We illustrate all these concepts with the example known as
Selten’s Horse (Kreps 1990) [see tree in the blackboard!]

I We can verify that (D,U,D) is a NE, since if player A choses
‘down’, then player B cannot improve his payoff by changing
from ‘up’ to ‘down’, because he will not be allowed to play.

I But suppose that we start the game at node 2. Then given
that player C will choose ’down’, then player B can improve
his outcome by choosing ’down’ as well, in which case player
A should choose ‘up’.

I Now (U,D,D) is clearly not a NE (in either the original or the
subgame), since player C can then switch to ‘up’, therefore
sending player B back to ‘up’. We are then led to the new
solution (U,U,U), which is also a NE.

I We want a criterion that will select (U,U,U) as more sensible
than (D,U,D).



Conditional Probabilities and Sequential Equilibrium

I First observe that we cannot use Zermelo’s algorithm to select
the preferred NE in Selten’s horse, since player C needs to
make a decision without knowing if she is at node 3 or 4.

I An alternative way to say this is to observe that the only
subgame for Selten’s horse is the entire game itself, so the
concept of subgame perfect equilibrium (SPE) does not lead
to a preferred solution.

I Instead, we replace Zermelo’s algorithm by a procedure
involving the conditional probabilities of being on each node.

I Similarly, the concept of SPE is replaced by that of sequential
equilibrium.



Strategies and beliefs

I Let β denote the collective set of beliefs that each player has
regarding the conditional probabilities for each node of each
information set.

I Let Σ denote the collective set of strategies adopted by each
player given their personal beliefs.

I Define a sequential equilibrium as a pair (Σ, β) with the
property that β is consistent with Bayes’s rule and such that,
starting from each information set, each player plays optimally
from then on (based on both the available strategies and
beliefs of other players).



Back to Selten’s Horse

I Returning to Selten’s horse, suppose that player C believes to
be at node 4 with probability 0.5. Then her expected payoff
for playing D is (0.5× 4 + 0.5× 0) = 2, whereas her expected
payoff for playing U is (0.5× 1 + 0.5× 2) = 1.5. She will
therefore prefer to play ‘down’, in which case B must play
‘down’.

I Therefore, although (D,U,D) is a NE, it is not a SE, based
on a subgame starting at node 2. But neither is (U,U,U),
since a subgame starting at the information set 3-4 would lead
C to choose ‘down’. Since these are the only two possible NE
in this game, we conclude that there is no SE solution.

I Alternatively, changing the probabilities to 0.1 for node 3 and
0.9 for node 4 lead to an expect payoff for C moving ‘down’
equal to 0.4, versus an expected payoff for her moving ‘up’
equal to 1.9. In this case, (D,U,D) is clearly not a SE,
whereas (U,U,U) satisfies the conditions of being a SE.



Another example of SE

I Consider now the following example from Kreps (1990) [refer
to tree in the blackboard !]

I Assigning probabilities 0.7 and 0.3 to nodes 1 and 2,
respectively, we see that (L, L, L) is not a SE (since 2.6 is less
than 3.1)).

I If we now say that player C chooses L with probability 0.5,
then (L, L, L) becomes a SE (since 2.6 is more than 2.2)

I Finally, keeping player C as it was before (i.e with no
probabilities), but changing the probabilities of nodes 1 and 2
to 0.9 and 0.1, respectively, would also turn (L, L, L) into a SE
(since 2 is more than 1.7).


