Business V703 Financial Modeling Valuation Lecture 7: Investment, suspension and abandonment

M. R. Grasselli

Mathematics and Statistics McMaster University

February 15, 2006

The option to mothball

- Suppose that, instead of completely abandoning the project, we have the option to mothball it (i.e temporarily suspend it), while prices remain unfavorable.
- As before, let *I* be the sunk cost for an initial investment and *C* be the rate of operating costs in the active phase.
- Additionally, let E_M be the sunk cost for mothballing an active project and C_M be the rate of maintenance costs for a mothballed project.
- Finally, let I_R be the sunk cost necessary to reactivate a mothballed project and E_S be the scrapping sunk cost (which could be negative) for permanently abandoning it.
- ▶ Mothballing in only viable if C_M < C and/or I_R < I. We assume that both are true.</p>

Price thresholds

- What triggers the decisions to invest, mothball, reactivate or scrap ?
- Initial investment threshold: invest when $P \ge P_H$.
- Mothballing threshold: suspend operations when $P \leq P_M$.
- Reactivation threshold: reactivate when $P \ge P_R$.
- Scrapping threshold: scrap when $P \leq P_S$.
- We expect that $P_S < P_M < P_R < P_H$.

Project values and options

- ► As before, we denote the value of an idle project by F⁰ and the value of an active project by F¹.
- We further introduce F^M as the value of a mothballed project.

► Then

$$F^0 = option to invest at cost I$$

 F^1 = cash flow + option to mothball at cost E_M

$$F^M$$
 = cash flow + option to reactivate at cost I_R

+ option to scrap at cost E_S

- ▶ When the underlying output flow rate is *P*, the present value for the cash flows of an active project is given, as before, by $\frac{P}{\delta} \frac{C}{r}$.
- Similarly, the present value for the cash flows of a mothballed project is $-\frac{C_M}{r}$.

Grid Values

▶ As before, the underlying values for *P_i* are given by

$$P_i = P_{\bar{m}} e^{(\bar{m}-i)\sigma\sqrt{\Delta t}}, \qquad i = 1, \dots m,$$

where \bar{m} denotes a middle row. We then complement this with $P_{m+1} = 0$.

Next, denoting by F^k_{ij} the value for the project in phase k = 0, 1, M at time t_j when the underlying output rate is P_i, we obtain its value on the grid using the recursion formula

 $F_{ij}^k = \max\{\text{continuation value, possible exercise values}\}.$

Boundary values

• At the bottom of the grid we have, for all j = 1, ..., n + 1:

$$F^{0}_{m+1,j} = 0$$

$$F^{1}_{m+1,j} = -(E_{S} + E_{M})$$

$$F^{M}_{m+1,j} = -E_{S}$$

Similarly, at the top of the grid we should have, for all j = 1..., n + 1:

$$F_{1j}^{0} = \frac{P_{1}}{\delta} - \frac{C}{r} - I$$

$$F_{1j}^{1} = \frac{P_{1}}{\delta} - \frac{C}{r}$$

$$F_{1j}^{M} = \frac{P_{1}}{\delta} - \frac{C}{r} - I_{R}$$

Boundary values (continued)

Finally, at the final time we have, for $i = 1, \dots, m + 1$:

$$F_{i,n+1}^{0} = \max \left[0, \left(\frac{P_{i}}{\delta} - \frac{C}{r} \right) - I \right]$$

$$F_{i,n+1}^{1} = \max \left[\frac{P_{i}}{\delta} - \frac{C}{r}, -\frac{C_{M}}{r} - E_{M}, -E_{S} - E_{M} \right]$$

$$F_{i,n+1}^{M} = \max \left[-\frac{C_{M}}{r}, \left(\frac{P_{i}}{\delta} - \frac{C}{r} \right) - I_{R}, -E_{S} \right]$$

Idle phase

- In the idle phase, the only possibilities are to remain idle or switch to an active project.
- This gives the following continuation and exercise values:

$$cont_{ij}^{0} = \frac{qF_{i-1,j+1}^{0} + (1-q)F_{i+1,j+1}^{0}}{e^{r\Delta t}}$$

$$exer_{ij}^{0} = -I + \left(\frac{P_{i}}{\delta} - \frac{C}{r}\right)$$

$$+ \frac{q(F_{i-1,j+1}^{1} - \frac{P_{i-1}}{\delta} + \frac{C}{r}) + (1-q)(F_{i+1,j+1}^{1} - \frac{P_{i+1}}{\delta} + \frac{C}{r})}{e^{r\Delta t}}$$

Mothballed phase

- In the mothballed phase, the possibilities are to remain mothballed, switch to an active project or abandon it permanently.
- This gives the following continuation and exercise values:

$$\operatorname{cont}_{ij}^{M} = -\frac{C_{M}}{r} + \frac{q(F_{i-1,j+1}^{M} + \frac{C_{M}}{r}) + (1-q)(F_{i+1,j+1}^{M} + \frac{C_{M}}{r})}{e^{r\Delta t}}$$
$$\operatorname{exer}_{ij}^{M,1} = -I_{R} + \left(\frac{P_{i}}{\delta} - \frac{C}{r}\right)$$

$$+ \frac{q(F_{i-1,j+1}^{1} - \frac{P_{i-1}}{\delta} + \frac{C}{r}) + (1-q)(F_{i+1,j+1}^{1} - \frac{P_{i+1}}{\delta} + \frac{C}{r})}{e^{r\Delta t}}$$

$$\exp_{ij}^{M,0} = -E_S + \frac{qF_{i-1,j+1}^0 + (1-q)F_{i+1,j+1}^0}{e^{r\Delta t}}$$

Active phase

- In the active phase, the possibilities are to remain active, suspend or abandon the project.
- This gives the following continuation and exercise values:

$$\operatorname{cont}_{ij}^{1} = \left(\frac{P_{i}}{\delta} - \frac{C}{r}\right)$$

$$= \frac{q(F_{i-1,j+1}^{1} - \frac{P_{i-1}}{\delta} + \frac{C}{r}) + (1-q)(F_{i+1,j+1}^{1} - \frac{P_{i+1}}{\delta} + \frac{C}{r})}{e^{r\Delta t}}$$

$$\operatorname{exer}_{ij}^{1,0} = -E_{S} - E_{M} \frac{qF_{i-1,j+1}^{0} + (1-q)F_{i+1,j+1}^{0}}{e^{r\Delta t}}$$

$$\operatorname{exer}_{ij}^{1,M} = -E_{M} - \frac{C_{M}}{r}$$

$$+ \frac{q(F_{i-1,j+1}^{M} + \frac{C_{M}}{r}) + (1-q)(F_{i+1,j+1}^{M} + \frac{C_{M}}{r})}{e^{r\Delta t}}$$

Thresholds

- As before, the entry threshold is the price P_H where $F^0 = F^1 I$.
- Similarly, the mothballing threshold P_M is the point where $F^1 = F^M E_M$.
- ► Analogously, the reactivation threshold P_R is the price for which F^M = F¹ − I_R.
- Finally, the scrapping threshold is the point where $F^M = F^0 E_S$.

Example

Consider the parameters:

$$T = 30, I = 2, E_M = 0, E_S = 0$$

$$C = 1, \sigma = 0.2, r = 0.05, \delta = 0.05$$

Using this values, we consider the following scenarios:

$$C_M = 0.01, 0.05$$

 $I_R = 0.2, 0.4, 0.6, 0.8, 1$

▶ We should now run our algorithm and find our own thresholds!