Business V703 Financial Modeling Valuation Lecture 6: Entry and exit strategies

M. R. Grasselli

Mathematics and Statistics McMaster University

February 8, 2006

Review of the investment rule

We have assumed until now that the underlying project has a positive value given by

$$dV = \alpha V_t dt + \sigma V_t dz_t \tag{1}$$

- We have determined that when V_t < V^{*}_t (that is, before an investment decision is made on the project) the potential investor holds an option with value given by F(V_t, t) > (V_t − I).
- Once the project value hits the threshold V^{*}_t, an investment decision is made and the option value becomes F(V_t, t) = V_t I thereafter.
- That is, there are no decisions to be made after the initial investment, since the project value V_t remains positive in perpetuity.
- All we have to do is sit back and collect the returns indefinitely !

Output versus Operating Costs

- The framework of the previous slide ignores the possibility of negative cash flows arising from the active project, for instance, when operating costs exceed the revenue.
- Once this happens, we have to consider the decision to abandon the project.
- ► We therefore depart from the model (1) for the project value, and instead focus on two other underlying variables: the (random) output cash flow rate P_t and the (fixed) operating cost rate C.
- Given P_t and C, the cash flow obtained during a period Δt is therefore approximately equal to

$$(P_t - C)\Delta t$$

Embedded options

- Modeling P_t as the underlying variable has the effect of turning the project value itself into a derivative, that is, a process whose value depends on P_t.
- The decisions to invest or abandon the project are then viewed as options which are embedded in the project value itself.
- ► We then divide the overall project value into several different functions F⁰(P, t), F¹(P, t),... depending on which options are available for a given level of P.

Zero Operating Cost

- For instance, the case considered in the previous lecture corresponds to C = 0 and P_t = δV_t, where V_t is given by (1).
- ▶ Denote P^{*}_t = δV^{*}_t, so that the investment decision can be translated in terms of P, instead of V.
- ► Then the region P < P* (which is equivalent to V < V*) corresponds to an idle phase for the project, where its value is given by</p>

$$F^0(P,t) = F(V,t) = F(P/\delta,t).$$

Similarly, the region P > P* (which is equivalent to V > V*) corresponds to the active phase for the project, where its value is simply

$$F^1(P,t) = V_t - I = P_t/\delta - I.$$

Exit and Entry Costs

Consider a project with an output rate P_t governed by

$$dP_t = \alpha P_t dt + \sigma P_t dz_t \tag{2}$$

- Assume a non-zero operating cost rate C.
- Suppose that, whenever the project is idle, the cost to activated it is equal to I > 0.
- Moreover, suppose that, whenever the project is active, it can be shut down at a cost equal to E.
- We could have E negative (corresponding to a scrap value), as long as I + E > 0 (otherwise we have a money making machine!).

Idle and active projects

- ► We then divide the project values into the functions F⁰(P, t), corresponding to the idle phase, and F¹(P, t), corresponding to the active phase.
- That is,

$$F^0(P,t) =$$
 option to invest for a cost *I*
 $F^1(P,t) =$ cash flow + option to abandon at a cost *E*.

- To value these options, we again appeal to arbitrage arguments.
- For this, as always in this course, we will assume that there exits a financial asset X_t which is perfectly correlated with P_t, that is,

$$dX_t = \mu X_t dt + \sigma X_t dz_t, \tag{3}$$

where $\mu - \alpha = \delta$.

Cash Flow Values

- Before we calculate the option values, it is instructive to calculate the present value of the cash flows if the project is kept active in perpetuity.
- Since C is deterministic, the present value of the future operating cost is given by

$$\int_0^\infty C e^{-rt} dt = \frac{C}{r}.$$

➤ On the other hand, for the stochastic output flow rate P_t given by (2) with current value P₀, which is assumed to be correlated with a financial asset X_t given by (3), the present value of future cash flows is

$$\int_0^\infty E[P_t]e^{-\mu t}dt = \int_0^\infty P_0 e^{\alpha t}e^{-\mu t}dt = \frac{P_0}{\mu - \alpha} = \frac{P_0}{\delta}.$$

Compared this with the case of a project with value given by (1) and paying proportional dividends at a rate D (for which the present value of future cash flows is simply V₀).

Grid Values

We start by determining the underlying values for P(i) according to

$$P_i = P_{\bar{m}} e^{(\bar{m}-i)\sigma\sqrt{\Delta t}}, \qquad i = 1, \dots m,$$

where \bar{m} denotes a middle row.

- As before, we complement this by setting $P_{m+1} = 0$.
- Next, denoting by F^k_{ij} the value for the project in phase k at time t_j when the underlying output rate is P_i, we obtain its value on the grid using the recursion formula

$$F_{ij}^{k} = \max\{\text{continuation value, exercise value}\}.$$

Idle phase

- In the idle phase, we have to choose between remaining idle or switching to an active project.
- In other words, we take the maximum between the following continuation and exercise values:

$$\operatorname{cont}_{ij}^{0} = \frac{qF_{i-1,j+1}^{0} + (1-q)F_{i+1,j+1}^{0}}{e^{r\Delta t}}$$
$$\operatorname{exer}_{ij}^{0} = \left(\frac{P_{i}}{\delta} - \frac{C}{r}\right) - I$$
$$+ \frac{q(F_{i-1,j+1}^{1} - \frac{P_{i-1}}{\delta} + \frac{C}{r}) + (1-q)(F_{i+1,j+1}^{1} - \frac{P_{i+1}}{\delta} + \frac{C}{r})}{e^{r\Delta t}}$$

Active phase

- In the active phase, we have to choose between remaining active or switching to an idle project.
- In other words, we take the maximum between the following continuation and exercise values:

$$\operatorname{cont}_{ij}^{1} = \frac{P_{i}}{\delta} - \frac{C}{r} + \frac{q(F_{i-1,j+1}^{1} - \frac{P_{i-1}}{\delta} + \frac{C}{r}) + (1-q)(F_{i+1,j+1}^{1} - \frac{P_{i+1}}{\delta} + \frac{C}{r})}{e^{r\Delta t}}$$
$$\operatorname{exer}_{ij}^{1} = \frac{qF_{i-1,j+1}^{0} + (1-q)F_{i+1,j+1}^{0}}{e^{r\Delta t}} - E$$

Boundary values

- For the formulas above to work, we need to specify the values of the options at the boundaries of the grid.
- At the bottom of the grid it (where $P_{m+1} = 0$), we have

$$F_{m+1,j}^0 = 0$$

 $F_{m+1,j}^1 = -E, \quad j = 1, \dots, n+1.$

At the top of the grid (where P is at its maximum), we have

$$F_{1j}^{1} = \frac{P_{1}}{\delta} - \frac{C}{r}$$

$$F_{1j}^{0} = \frac{P_{1}}{\delta} - \frac{C}{\delta} - I, \quad j = 1, \dots, n+1.$$

Finally, at the final time, we have

$$F_{i,n+1}^{0} = \max\left[\left(\frac{P_{i}}{\delta} - \frac{C}{r}\right) - I, 0\right]$$

$$F_{i,n+1}^{1} = \max\left[\frac{P_{i}}{\delta} - \frac{C}{r}, -E\right], \quad i = 1, \dots, m+1$$

Thresholds

- ► As before, for each fixed t = t_j we can obtain a graph of the project values F⁰_{ij} and F¹_{ij} as functions of the underlying output flow rate P_i.
- We then obtain that the decision to turn an idle project into an active one is determined by an entry threshold P^H_{tj} obtained when the graph of F⁰_{ii} touches the graph of (F¹_{ii} − I).
- SImilarly, the decision to shut down an active project is triggered by an exit threshold P^L_{tj} obtained when the graph of F¹_{ij} touches the graph of (F⁰_{ij} − E).

Stationarity and Myopic Decisions

- We can again observe that as we move away from the maturity time T, the entry and exit thresholds approach constant values P^L < P^H.
- Moreover, we can compare this values with the entry and exit threshold that would be dictated by Marshallian analysis.
- According to NPV, we should invest in the project whenever $\frac{P}{\delta} \frac{C}{r} > I$.
- Similarly, NPV tells us that we should abandon the project whenever $\frac{P}{\delta} \frac{C}{r} < -E$.
- However, we can verify from numerical experiments that

$$\frac{P^L}{\delta} < \left(\frac{C}{r} - E\right) < \left(\frac{C}{r} + I\right) < \frac{P^H}{\delta}.$$

Example: copper industry

- Let us now consider the practical example where the project consists of a copper production facility.
- Denote by P the output flow rate obtained from selling 10 million pounds of copper per year.
- Expressing time in years and money in millions of dollars, let us take the parameters:

$$T = 30, I = 20, E = 2,$$

$$C = 8, \delta = 0.04, r = 0.04, \sigma = 0.2$$

Using this values, we obtain the Marshallian thresholds

$$\delta\left(\frac{C}{r}+I\right) = 8.8$$
$$\delta\left(\frac{C}{r}-E\right) = 7.92$$

We should now run our algorithm and find our own thresholds!