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Review of the investment rule

I We have assumed until now that the underlying project has a
positive value given by

dV = αVtdt + σVtdzt (1)

I We have determined that when Vt < V ∗t (that is, before an
investment decision is made on the project) the potential
investor holds an option with value given by
F (Vt , t) > (Vt − I ).

I Once the project value hits the threshold V ∗t , an investment
decision is made and the option value becomes
F (Vt , t) = Vt − I thereafter.

I That is, there are no decisions to be made after the initial
investment, since the project value Vt remains positive in
perpetuity.

I All we have to do is sit back and collect the returns
indefinitely !



Output versus Operating Costs

I The framework of the previous slide ignores the possibility of
negative cash flows arising from the active project, for
instance, when operating costs exceed the revenue.

I Once this happens, we have to consider the decision to
abandon the project.

I We therefore depart from the model (1) for the project value,
and instead focus on two other underlying variables: the
(random) output cash flow rate Pt and the (fixed) operating
cost rate C .

I Given Pt and C , the cash flow obtained during a period ∆t is
therefore approximately equal to

(Pt − C )∆t



Embedded options

I Modeling Pt as the underlying variable has the effect of
turning the project value itself into a derivative, that is, a
process whose value depends on Pt .

I The decisions to invest or abandon the project are then viewed
as options which are embedded in the project value itself.

I We then divide the overall project value into several different
functions F 0(P, t),F 1(P, t), . . . depending on which options
are available for a given level of P.



Zero Operating Cost

I For instance, the case considered in the previous lecture
corresponds to C = 0 and Pt = δVt , where Vt is given by (1).

I Denote P∗t = δV ∗t , so that the investment decision can be
translated in terms of P, instead of V .

I Then the region P < P∗ (which is equivalent to V < V ∗)
corresponds to an idle phase for the project, where its value is
given by

F 0(P, t) = F (V , t) = F (P/δ, t).

I Similarly, the region P > P∗ (which is equivalent to V > V ∗)
corresponds to the active phase for the project, where its
value is simply

F 1(P, t) = Vt − I = Pt/δ − I .



Exit and Entry Costs

I Consider a project with an output rate Pt governed by

dPt = αPtdt + σPtdzt (2)

I Assume a non-zero operating cost rate C .

I Suppose that, whenever the project is idle, the cost to
activated it is equal to I > 0.

I Moreover, suppose that, whenever the project is active, it can
be shut down at a cost equal to E .

I We could have E negative (corresponding to a scrap value),
as long as I + E > 0 (otherwise we have a money making
machine!).



Idle and active projects

I We then divide the project values into the functions F 0(P, t),
corresponding to the idle phase, and F 1(P, t), corresponding
to the active phase.

I That is,

F 0(P, t) = option to invest for a cost I

F 1(P, t) = cash flow + option to abandon at a cost E .

I To value these options, we again appeal to arbitrage
arguments.

I For this, as always in this course, we will assume that there
exits a financial asset Xt which is perfectly correlated with Pt ,
that is,

dXt = µXtdt + σXtdzt , (3)

where µ− α = δ.



Cash Flow Values

I Before we calculate the option values, it is instructive to
calculate the present value of the cash flows if the project is
kept active in perpetuity.

I Since C is deterministic, the present value of the future
operating cost is given by∫ ∞

0
Ce−rtdt =

C

r
.

I On the other hand, for the stochastic output flow rate Pt

given by (2) with current value P0, which is assumed to be
correlated with a financial asset Xt given by (3), the present
value of future cash flows is∫ ∞

0
E [Pt ]e

−µtdt =

∫ ∞

0
P0e

αte−µtdt =
P0

µ− α
=

P0

δ
.

I Compared this with the case of a project with value given by
(1) and paying proportional dividends at a rate D (for which
the present value of future cash flows is simply V0).



Grid Values

I We start by determining the underlying values for P(i)
according to

Pi = Pm̄e(m̄−i)σ
√

∆t , i = 1, . . . m,

where m̄ denotes a middle row.

I As before, we complement this by setting Pm+1 = 0.

I Next, denoting by F k
ij the value for the project in phase k at

time tj when the underlying output rate is Pi , we obtain its
value on the grid using the recursion formula

F k
ij = max{continuation value, exercise value}.



Idle phase

I In the idle phase, we have to choose between remaining idle or
switching to an active project.

I In other words, we take the maximum between the following
continuation and exercise values:

cont0ij =
qF 0

i−1,j+1 + (1− q)F 0
i+1,j+1

er∆t

exer0ij =

(
Pi

δ
− C

r

)
− I

+
q(F 1

i−1,j+1 −
Pi−1

δ + C
r ) + (1− q)(F 1

i+1,j+1 −
Pi+1

δ + C
r )

er∆t



Active phase

I In the active phase, we have to choose between remaining
active or switching to an idle project.

I In other words, we take the maximum between the following
continuation and exercise values:

cont1ij =
Pi

δ
− C

r

+
q(F 1

i−1,j+1 −
Pi−1

δ + C
r ) + (1− q)(F 1

i+1,j+1 −
Pi+1

δ + C
r )

er∆t

exer1ij =
qF 0

i−1,j+1 + (1− q)F 0
i+1,j+1)

er∆t
− E



Boundary values

I For the formulas above to work, we need to specify the values
of the options at the boundaries of the grid.

I At the bottom of the grid it (where Pm+1 = 0), we have

F 0
m+1, j = 0

F 1
m+1, j = −E , j = 1, . . . , n + 1.

I At the top of the grid (where P is at its maximum), we have

F 1
1j =

P1

δ
− C

r

F 0
1j =

P1

δ
− C

δ
− I , j = 1, . . . , n + 1.

I Finally, at the final time, we have

F 0
i ,n+1 = max

[(
Pi

δ
− C

r

)
− I , 0

]
F 1

i ,n+1 = max

[
Pi

δ
− C

r
,−E

]
, i = 1, . . . m + 1



Thresholds

I As before, for each fixed t = tj we can obtain a graph of the
project values F 0

ij and F 1
ij as functions of the underlying

output flow rate Pi .

I We then obtain that the decision to turn an idle project into
an active one is determined by an entry threshold PH

tj

obtained when the graph of F 0
ij touches the graph of (F 1

ij − I ).

I SImilarly, the decision to shut down an active project is
triggered by an exit threshold PL

tj
obtained when the graph of

F 1
ij touches the graph of (F 0

ij − E ).



Stationarity and Myopic Decisions

I We can again observe that as we move away from the
maturity time T , the entry and exit thresholds approach
constant values PL < PH .

I Moreover, we can compare this values with the entry and exit
threshold that would be dictated by Marshallian analysis.

I According to NPV, we should invest in the project whenever
P
δ −

C
r > I .

I Similarly, NPV tells us that we should abandon the project
whenever P

δ −
C
r < −E .

I However, we can verify from numerical experiments that

PL

δ
<

(
C

r
− E

)
<

(
C

r
+ I

)
<

PH

δ
.



Example: copper industry

I Let us now consider the practical example where the project
consists of a copper production facility.

I Denote by P the output flow rate obtained from selling 10
million pounds of copper per year.

I Expressing time in years and money in millions of dollars, let
us take the parameters:

T = 30, I = 20, E = 2,

C = 8, δ = 0.04, r = 0.04, σ = 0.2

I Using this values, we obtain the Marshallian thresholds

δ

(
C

r
+ I

)
= 8.8

δ

(
C

r
− E

)
= 7.92

I We should now run our algorithm and find our own thresholds!


